
 8549A–CAP–10/08

Customizable
Microcontroller

AT91CAP7E

Preliminary
 Features
• Incorporates the ARM7TDMI® ARM® Thumb® Processor

– 72 MIPS at 80MHz
– EmbeddedICE™ In-circuit Emulation, Debug Communication Channel Support

• Additional Embedded Memories
– One 256 Kbyte Internal ROM, Single-cycle Access at Maximum Matrix Speed
– 160 Kbytes of Internal SRAM, Single-cycle Access at Maximum Processor or

Matrix Speed (Configured in blocks of 96 KB and 64 KB with separate AHB slaves)
• External Bus Interface (EBI)

– Supports SDRAM, Static Memory, NAND Flash/SmartMedia® and CompactFlash®

• USB 2.0 Full Speed (12 Mbits per second) Device Port
– On-chip Transceiver, 2,432-byte Configurable Integrated DPRAM

• FPGA Interface
– High Connectivity for up to 2 AHB Masters and 4 dedicated/16 muxed Slaves

• 10-bit Analog to Digital Converter (ADC)
– Up to 8 multiplexed channels
– 440 kSample / s

• Bus Matrix
– Four-layer, 32-bit Matrix

• Fully-featured System Controller, including
– Reset Controller, Shut Down Controller
– Twenty 32-bit Battery Backup Registers for a Total of 80 Bytes
– Clock Generator
– Advanced Power Management Controller (APMC)
– Advanced Interrupt Controller and Debug Unit
– Periodic Interval Timer, Watchdog Timer and Real-Time Timer

• Boot Mode Select Option and Remap Command
• Reset Controller

– Based on Two Power-on Reset Cells, Reset Source Identification and Reset Output
Control

• Shut Down Controller
– Programmable Shutdown Pin Control and Wake-up Circuitry

• Clock Generator (CKGR)
– 32768Hz Low-power Oscillator on Battery Backup Power Supply, Providing a

Permanent Slow Clock
– Internal 32kHz RC oscillator for fast start-up
– 8 to 16 MHz On-chip Oscillator, 50 to 100 MHz PLL, and 80 to 240 MHz PLL

• Advanced Power Management Controller (APMC)
– Very Slow Clock Operating Mode, Software Programmable Power Optimization

Capabilities
– Four Programmable External Clock Output Signals

• Advanced Interrupt Controller (AIC)
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
– Two External Interrupt Sources and one Fast Interrupt Source, Spurious interrupt

protected
• Debug Unit (DBGU)

– 2-wire UART and Support for Debug Communication Channel, Programmable ICE
Access Prevention

• Periodic Interval Timer (PIT)
– 20-bit interval Timer plus 12-bit interval Counter

• Watchdog Timer (WDT)
– Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock

• Real-Time Timer (RTT)
– 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler

• Two 32-bit Parallel Input/Output Controllers (PIOA and PIOB)
– 32 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os each
– Input Change Interrupt Capability on Each I/O Line
– Individually Programmable Open-drain, Pull-up Resistor, Bus Holder and Synchronous Output

• 22 Peripheral DMA Controller Channels (PDC)
• Two Universal Synchronous/Asynchronous Receiver Transmitters (USART)

– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding
• Master/Slave Serial Peripheral Interface (SPI)

– 8- to 16-bit Programmable Data Length, External Peripheral Chip Select
– Synchronous Communications at up to 80Mbits/sec

• One Three-channel 16-bit Timer/Counters (TC)
– Three External Clock Inputs, Two multi-purpose I/O Pins per Channel
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability

• IEEE 1149.1 JTAG Boundary Scan on All Digital Pins
• Required Power Supplies:
• 1.08V to 1.32V for VDDCORE and VDDBU
• 1.08V to 1.32V for VDDOSC, VDDOSC32, and VDDPLLB
• 3.0V to 3.6V for VDDPLLA and VDDIO
• 3.0V to 3.6V for AVDD (ADC)
• Package Options: 144 LQFP, 176 LQFP, 208 PQFP, 144 LFBGA, 176TFBGA, 208 TFBGA, 225 LFBGA

1. Description
The AT91CAP7E semi-custom System on a Chip (SoC) is a microcontroller with a special
interface that allows logic in an external FPGA to be mapped directly onto its internal Amba
High-speed Bus (AHB). This FPGA interface includes multiple master and slave channels
providing much greater bus bandwidth for data passing between the microcontroller and an
FPGA than traditional interface methods using general purpose I/O or external memory
interfaces. The AT91CAP7E includes an ARM7TDMI core with the AHB, on-chip ROM, SRAM, a
full-featured system controller, and various general-purpose peripherals accessible via the
Amba Peripheral Bus (APB). It is implemented in a 130 nm CMOS 1.2V process and supports
3.3V I/O.

The AT91CAP7E is built upon Atmel’s AT91CAP7S customizablemicrocontroller with up to 450
Kgates of metal programmable (MP) logic. The FPGA Interface is implemented inthe MP block
and makes use of MP I/O’s available on the AT91CAP7S giving customers not only an efficient,
powerful FPGA interface on a standard microcontroller, but also an excellent platform for
emulating their own AT91CAP7S-based designs.
2
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
2. Block Diagram

Figure 2-1. AT91CAP7E Block Diagram

PI
O

AHB Wrapper

PIOBTimer Counter

TC0

TC1

TC2

FIFO

USB Device

ARM7TDMI
Processor

JTAG
Boundary Scan

ICE

AIC

PI
O

Fast SRAM
96K bytes

Peripheral
Bridge

Fast ROM
256K bytes

Peripheral
DMA

Controller

PLLA

PLLB PMC

RSTC

OSC

PIOA

RTT

SHDWC

POR

OSC

WDT

GPBREG

PIT

POR

EBI

Static
Memory

Controller

6-layer AHB
Matrix

CompactFlash
NAND Flash

SDRAM
Controller

PI
O

PI
O

Tr
an

sc
ei

ve
r

PDC

APB

DBGU

USART0

USART1

SPI

PDC

PDC

PDC

PDC

System Controller

FPGA Interface
in

Metal Programmable
Block

Fast SRAM
64K bytes

 Slaves

 Masters

4

4

PDC

RC OSC

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0
TIOA1
TIOB1
TIOA2
TIOB2

RXD0
TXD0
SCK0
RTS0
CTS0

RXD1
TXD1
SCK1
RTS1
CTS1

NPCS00
NPCS01
NPCS02
NPCS03

MISO0
MOSI0
SPCK0

D0-D15
A0/NBS0

A2-A15/A18-A22
A16/BA0
A17/BA1
NCS0
NCS1/SDCS

NCS3/NANDCS
NRD/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK
SDCKE
RAS-CAS
SDWE
SDA10

A23-A24

NCS5/CFCS1

BMS

NCS2

A25/CFRNW
NCS4/CFCS0

NANDOE
NANDWE

D16-D31

A1/NBS2/NWR2

NWAIT

DDM
DDP

CFCE1
CFCE2

JTAGSEL
TDI

TDO
TMS
TCK

NTRST

FIQ
IRQ0-IRQ1

PLLRCA

DRXD
DTXD

XIN32
XOUT32

NRST

PCK0-PCK3

SHDN
WKUP

GNDBU

XIN
XOUT

VDDBU

VDDCORE

TST

10-Bit ADC
ADTRG

ADVREF

MPIO81-MPIO00

NCS6
NCS7

AD0 / MPIO82
AD1 / MPIO83
AD2 / MPIO84
AD3 / MPIO85
 AD4 / MPIO86
AD5 / MPIO87
AD6 / MPIO88
AD7 / MPIO89
3
8549A–CAP–10/08

3. Signal Description

Table 3-1. Signal Description by Peripheral

Signal Name Function Type
Active
Level Comments

Power Supplies

VDDCORE Core Chip Power Supply Power 1.08V to 1.32V

VDDBU Backup I/O Lines Power Supply Power 1.08V to 1.32V

VDDIO I/O Lines Power Supply Power 3.0V to 3.6V

VDDPLLA PLL A Power Supply Power 3.0V to 3.6V

VDDPLLB PLL B Power Supply Power 1.08V to 1.32V

VDDOSC Oscillator Power Supply Power 1.08V to 1.32V

VDDOSC32 Oscillator Power Supply Power 1.08V to 1.32V

AVDD ADC Analog Power Supply Power 3.0V to 3.6V

GND Ground Ground

GNDPLLA PLL Ground A Ground

GNDPLLB PLL Ground B Ground

GNDOSC Main Oscillator Ground Ground

GNDOSC32 32 kHz Oscillator Ground Ground

GNDBU Backup Ground Ground

AGND ADC Analog Ground Ground

Clocks, Oscillators and PLLs

XIN Main Oscillator Input Input Analog
Connect to an external crystal
or drive with a 1.2V nominal
square wave clock input

XOUT Main Oscillator Output Output Analog
Connect to external crystal or
leave unconnected

XIN32 Slow Clock Oscillator Input Input Analog

Must connect to a 32768Hz
crystal or drive with a 1.2V,
32kHz nominal square wave
input

XOUT32 Slow Clock Oscillator Output Output Analog
Connect to a 32768Hz crystal
or leave unconnected

PLLRCA PLL A Filter Input Analog
Must connect to an
appropriate RC network for
proper PLL operation

PCK0 - PCK3 Programmable Clock Output Output Clock

Analog to Digital Converter

AD0 ADC Input 0 An. Input Analog access via MPIO82 pin

AD1 ADC Input 1 An. Input Analog access via MPIO83 pin

AD2 ADC Input 2 An. Input Analog access via MPIO84 pin

AD3 ADC Input 3 An. Input Analog access via MPIO85 pin
4
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
AD4 ADC Input 4 An. Input Analog access via MPIO86 pin

AD5 ADC Input 5 An. Input Analog access via MPIO87 pin

AD6 ADC Input 6 An. Input Analog access via MPIO88 pin

AD7 ADC Input 7 An. Input Analog access via MPIO89 pin

ADVREF ADC Voltage Reference Input An. Input Analog

Do not leave floating - Connect
to AVDD externally or another
analog voltage reference up to
3.3V

ADTRG ADC External Trigger Dig. Input High
Tie to AGND externally if
enabled and not used - access
via PIOA

Shutdown, Wake-up Logic

SHDN Shut-Down Control Output High
Driven at 0V only. Do not tie
over VDDBU

WKUP Wake-Up Input Input
Accept between 0V and
VDDBU.

ICE and JTAG

TCK Test Clock Input

TDI Test Data In Input Pull-up resistor

TDO Test Data Out Output

TMS Test Mode Select Input Pull-up resistor

NTRST Test Reset Signal Input Low Pull-up resistor

JTAGSEL JTAG Selection Input High Pull-down resistor

Reset/Test

NRST Microcontroller Reset I/O Low Pull-up resistor

TST Chip Test Enable Input High Pull-down resistor

BMS Boot Mode Select Input

Pull-up resistor

1=embedded ROM

0=EBI CS0

Debug Unit - DBGU

DRXD Debug Receive Data Input access via PIOA

DTXD Debug Transmit Data Output access via PIOA

Advanced Interrupt Controller - AIC

IRQ0 - IRQ1 External Interrupt Requests Input High access via PIOA

FIQ Fast Interrupt Request Input High access via PIOA

PIO Controller - PIOA and PIOB

PA0 - PA31 Parallel IO Controller A I/O
Pulled-up input at reset

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name Function Type
Active
Level Comments
5
8549A–CAP–10/08

PB0 - PB31 Parallel IO Controller B I/O access via MPIO0 - MPIO31

External Bus Interface - EBI

D0 - D31 Data Bus I/O
Pulled-up input at reset;
access D16 - D31 via PIOA

A0 - A25 Address Bus Output
0 at reset; access A23-A25 via
PIOA

NWAIT External Wait Signal Input Low access via PIOA

Static Memory Controller - SMC

NCS0 - NCS7 Chip Select Lines Output Low
access NCS4 - NCS7 via
PIOA

NWR0 -NWR3 Write Signal Output Low

NRD Read Signal Output Low

NWE Write Enable Output Low

NBS0 - NBS3 Byte Mask Signal Output Low

CompactFlash Support

CFCE1 - CFCE2 CompactFlash Chip Enable Output Low access via PIOA

CFOE CompactFlash Output Enable Output Low

CFWE CompactFlash Write Enable Output Low

CFIOR CompactFlash IO Read Output Low

CFIOW CompactFlash IO Write Output Low

CFRNW CompactFlash Read Not Write Output access via PIOA

CFCS0 - CFCS1 CompactFlash Chip Select Lines Output Low access via PIOA

NAND Flash Support

NANDCS NAND Flash Chip Select Output Low

NANDOE NAND Flash Output Enable Output Low access via PIOA

NANDWE NAND Flash Write Enable Output Low access via PIOA

SDRAM Controller

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Output Low

BA0 - BA1 Bank Select Output

SDWE SDRAM Write Enable Output Low

RAS - CAS Row and Column Signal Output Low

SDA10 SDRAM Address 10 Line Output

Universal Synchronous Asynchronous Receiver Transmitter USART

SCKx USARTx Serial Clock I/O access via PIOA

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name Function Type
Active
Level Comments
6
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
TXDx USARTx Transmit Data I/O access via PIOA

RXDx USARTx Receive Data Input access via PIOA

RTSx USARTx Request To Send Output access via PIOA

CTSx USARTx Clear To Send Input access via PIOA

Timer/Counter - TC

TCLKx TC Channel x External Clock Input Input access via PIOA

TIOAx TC Channel x I/O Line A I/O access via PIOA

TIOBx TC Channel x I/O Line B I/O access via PIOA

Serial Peripheral Interface - SPI

SPIx_MISO Master In Slave Out I/O access via PIOA

SPIx_MOSI Master Out Slave In I/O access via PIOA

SPIx_SPCK SPI Serial Clock I/O access via PIOA

SPIx_NPCS0 SPI Peripheral Chip Select 0 I/O Low access via PIOA

SPIx_NPCS1 - SPIx_NPCS3 SPI Peripheral Chip Select Output Low access via PIOA

USB Device Port

DDM USB Device Port Data - Analog

DDP USB Device Port Data + Analog

FPGA Interface- FPIF

FPP_IRQ_ENC0 -
FPP_IRQ_ENC3

FPGA Peripheral encoded interrupt
requests for FPP0 thru FPP5 and FPP8
thru FPP13

I/O High
access via PIOB/ mapped to
MPIO00 thru MPIO03

FPP6_IRQ FPP6 Interrupt Request I/O High
access via PIOB/ mapped to
MPIO04

FPP7_IRQ FPP7 Interrupt Request I/O High
access via PIOB/ mapped to
MPIO05

FPP6_TX_BFFR_EMPTY FPP6 Transmit Buffer Empty flag I/O High
access via PIOB/ mapped to
MPIO06

FPP6_RX_BFFR_FULL FPP6 Receive Buffer Full flag I/O High
access via PIOB/ mapped to
MPIO07

FPP6_CHNL_TX_END FPP6 Channel Transmit End I/O High
access via PIOB/ mapped to
MPIO08

FPP6_CHNL_RX_END FPP6 Channel Receive End I/O High
access via PIOB/ mapped to
MPIO09

FPP6_TX_RDY FPP6 Transmit Ready I/O High
access via PIOB/ mapped to
MPIO10

FPP6_RX_RDY FPP6 Receive Ready I/O High
access via PIOB/ mapped to
MPIO11

FPP6_TX_SIZE0 -
FPP6_TX_SIZE1

FPP6 Transfer Size I/O
access via PIOB/ mapped to
MPIO12 thru MPIO13

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name Function Type
Active
Level Comments
7
8549A–CAP–10/08

FPP6_RX_SIZE0 -
FPP6_RX_SIZE1

FPP6 Receive Size I/O
access via PIOB/ mapped to
MPIO14 thru MPIO15

FPP7_TX_BFFR_EMPTY FPP7 Transmit Buffer Empty flag I/O High
access via PIOB/ mapped to
MPIO16

FPP7_RX_BFFR_FULL FPP7 Receive Buffer Full flag I/O High
access via PIOB/ mapped to
MPIO17

FPP7_CHNL_TX_END FPP7 Channel Transmit End I/O High
access via PIOB/ mapped to
MPIO18

FPP7_CHNL_RX_END FPP7 Channel Receive End I/O High
access via PIOB/ mapped to
MPIO19

FPP7_TX_RDY FPP7 Transmit Ready I/O High
access 20via PIOB/ mapped to
MPIO20

FPP7_RX_RDY FPP7 Receive Ready I/O High
access via PIOB/ mapped to
MPIO21

FPP7_TX_SIZE0 -
FPP7_TX_SIZE1

FPP7 Transfer Size I/O
access via PIOB/ mapped to
MPIO22 thru MPIO23

FPP7_RX_SIZE0 -
FPP7_RX_SIZE1

FPP7 Receive Size I/O
access via PIOB/ mapped to
MPIO24 thru MPIO25

APB_C APB Bridge serial control I/O Low
Pull-up resistor; access via
PIOB/ mapped to MPIO26

APB_D0 - APB_D1 APB Bridge serial data lines I/O Low
Pull-up resistor; access via
PIOB/ mapped to MPIO27 thru
MPIO28

APB_A0 - APB_A1 APB Bridge serial address lines I/O Low
Pull-up resistor; access via
PIOB/ mapped to MPIO29 thru
MPIO30

APB_START APB Bridge serial start I/O Low
Pull-up resistor; access via
PIOB/ mapped to MPIO29 thru
MPIO31

MA_C2 - MA_C1 Master A serial control I/O Low
Pull-up resistor; mapped to
MPIO

MA_D0 - MA_D3 Master A serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

MA_A0 - MA_A3 Master A serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

MA_START Master A serial start I/O Low
Pull-up resistor; mapped to
MPIO

MB_C Master B serial control I/O Low
Pull-up resistor; mapped to
MPIO

MB_D0 - MB_D1 Master B serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

MB_A0 - MB_A1 Master B serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name Function Type
Active
Level Comments
8
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
MB_START Master B serial start I/O Low
Pull-up resistor; mapped to
MPIO

SA_C2 - SA_C1 Slave A serial control - single mode I/O Low
Pull-up resistor; mapped to
MPIO

SA_D0 - SA_D3 Slave A serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

SA_A0 - SA_A3 Slave A serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

SA_START Slave A serial start I/O Low
Pull-up resistor; mapped to
MPIO

SB_C Slave B serial control I/O Low
Pull-up resistor; mapped to
MPIO

SB_D0 - SB_D1 Slave B serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

SB_A0 - SB_A1 Slave B serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

SB_START Slave B serial start I/O Low
Pull-up resistor; mapped to
MPIO

SC_C2 - SC_C1 Slave C serial control - single mode I/O Low
Pull-up resistor; mapped to
MPIO

SC_D0 - SC_D3 Slave C serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

SC_A0 - SC_A3 Slave C serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

SC_START Slave C serial start I/O Low
Pull-up resistor; mapped to
MPIO

SD_C Slave D serial control I/O Low
Pull-up resistor; mapped to
MPIO

SD_D0 - SB_D1 Slave D serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

SD_A0 - SB_A1 Slave D serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

SD_START Slave D serial start I/O Low
Pull-up resistor; mapped to
MPIO

SZBT_C2 - SZBT_C1 Slave ZBT RAM serial control I/O Low
Pull-up resistor; mapped to
MPIO

SZBT_D0 - SZBT_D3 Slave ZBT RAM serial data lines I/O Low
Pull-up resistor; mapped to
MPIO

SZBT_A0 - SZBT_A3 Slave ZBT RAM serial address lines I/O Low
Pull-up resistor; mapped to
MPIO

SZBT_START Slave ZBT RAM serial start I/O Low
Pull-up resistor; mapped to
MPIO

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name Function Type
Active
Level Comments
9
8549A–CAP–10/08

FPIF_SCLK FPIF Serial Clock Input mapped to MPIO

FPIF_SCLK_FEEDBK FPIF Serial Clock Feedback Output mapped to MPIO

FPIF_RESETN FPIF Reset Input Low
Pull-up resistor; mapped to
MPIO

Table 3-1. Signal Description by Peripheral (Continued)

Signal Name Function Type
Active
Level Comments
10
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
4. Package and Pinout
The AT91CAP7E is available in a RoHS-compliant 225-ball LFBGA 13x13x1.4mm, 0.8 mm ball
pitch.

4.1 Mechanical Overview of the 225-ball LFBGA Package
Figure 4-1 shows the orientation of the 225-ball LFBGA Package. A detailed mechanical
description is given in the Mechanical Characteristics section of the product datasheet.

Figure 4-1. 225-ball LFBGA Pinout (Bottom View)

4.2 225-ball LFBGA Package Pinout
Warning: This package pinout is preliminary and is subject to change.

NN

RR

PP

131314141515

AA

BB
CC

112233445566881010 9911111212 77

DD

EE

GG

FF

JJ
HH

KK
LL

MM

Table 4-1. AT91CAP7E Pinout for 225-ball LFBGA Package

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name

A1 MPIO81 D13 MPIO01 H10 VDDC M7 PA22

A2 PA9 D14 MPIO75 H11 D5 M8 MPIO89/AD7

A3 PA8 D15 MPIO34 H12 PA3 M9 PA14

A4 MPIO45 E1 A3 H13 PA2 M10 MPIO70

A5 MPIO25 E2 A4 H14 A9 M11 GNDPLLA

A6 PA4 E3 MPIO80 H15 A10 M12 TDO

A7 MPIO13 E4 MPIO56 J1 D7 M13 TDI

A8 MPIO23 E5 BMS J2 D6 M14 PA28

A9 MPIO20 E6 PA10 J3 MPIO31 M15 NWR0

A10 MPIO43 E7 NCS2 J4 D8 N1 MPIO61

A11 MPIO41 E8 MPIO09 J5 DDP N2 MPIO64

A12 MPIO40 E9 MPIO08 J6 D2 N3 VDDBU

A13 MPIO03 E10 MPIO05 J7 GND N4 XOUT32

A14 MPIO76 E11 MPIO39 J8 GND N5 MPIO85/AD3

A15 A18 E12 MPIO00 J9 GND N6 AVDD

B1 A6 E13 MPIO35 J10 A12 N7 PA20

B2 MPIO49 E14 MPIO32 J11 MPIO17 N8 PA13

B3 MPIO48 E15 SDA10 J12 PA0 N9 MPIO67
11
8549A–CAP–10/08

B4 MPIO46 F1 SDWE J13 PA1 N10 NRD

B5 PA5 F2 A2 J14 MPIO19 N11 PLLRCA

B6 MPIO24 F3 MPIO55 J15 A8 N12 XIN

B7 MPIO15 F4 SDRAMCKE K1 MPIO29 N13 VDDPLLA

B8 MPIO11 F5 MPIO53 K2 MPIO30 N14 PA29

B9 MPIO22 F6 A0 K3 MPIO60 N15 NRST

B10 MPIO44 F7 VDDIO K4 MPIO59 P1 D4

B11 MPIO06 F8 MPIO26 K5 MPIO62 P2 D3

B12 MPIO04 F9 VDDIO K6 WKUP P3 SHDN

B13 MPIO37 F10 A19 K7 VDDIO P4 TST

B14 MPIO74 F11 MPIO36 K8 VDDC P5 MPIO82/AD0

B15 A20 F12 MPIO33 K9 VDDIO P6 MPIO87/AD5

C1 MPIO52 F13 A14 K10 XOUT P7 PA21

C2 NCS3 F14 A16 K11 PA25 P8 PA16

C3 MPIO50 F15 A15 K12 TMS P9 PA11

C4 MPIO79 G1 MPIO28 K13 PA24 P10 MPIO68

C5 PA7 G2 SDRAMCLK K14 MPIO16 P11 GNDOSC

C6 MPIO27 G3 A1 K15 MPIO18 P12 NWR1

C7 PA6 G4 D14 L1 MPIO57 P13 VDDOSC

C8 MPIO12 G5 D15 L2 MPIO58 P14 TCK

C9 MPIO21 G6 VDDC L3 D1 P15 PA27

C10 MPIO07 G7 GND L4 MPIO65 R1 JTAGSEL

C11 MPIO38 G8 GND L5 VDDOSC32 R2 ADVREF

C12 MPIO78 G9 GND L6 GNDBU R3 MPIO84/AD2

C13 A22 G10 VDDIO L7 MPIO86/AD4 R4 MPIO88/AD6

C14 A21 G11 RAS L8 NCS1 R5 AGND

C15 A17 G12 N/C L9 PA17 R6 PA23

D1 MPIO54 G13 A11 L10 GNDPLLB R7 PA19

D2 A5 G14 CAS L11 PA31 R8 PA15

D3 A7 G15 A13 L12 NTRST R9 PA12

D4 NCS0 H1 D10 L13 MPIO73 R10 MPIO66

D5 MPIO51 H2 D9 L14 PA30 R11 MPIO69

D6 MPIO47 H3 D13 L15 PA18 R12 MPIO71

D7 NWR3 H4 D11 M1 DDM R13 MPIO72

D8 MPIO14 H5 D12 M2 MPIO63 R14 VDDPLLB

D9 MPIO10 H6 VDDIO M3 D0 R15 PA26

Table 4-1. AT91CAP7E Pinout for 225-ball LFBGA Package (Continued)

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
12
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
D10 MPIO42 H7 GND M4 XIN32

D11 MPIO77 H8 GND M5 GNDOSC32

D12 MPIO02 H9 GND M6 MPIO83/AD1

Table 4-1. AT91CAP7E Pinout for 225-ball LFBGA Package (Continued)

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
13
8549A–CAP–10/08

5. Power Considerations

5.1 Power Supplies
The AT91CAP7E has several types of power supply pins:

• VDDCORE pins: Power the core, including the processor, the embedded memories and the
peripherals; voltage ranges from 1.08V and 1.32V (1.2V nominal). The associated ground
pins for this supply and the VDDIO supply are the GND pins.

• VDDIO pins: Power the I/O lines; voltage ranges between 3.0V and 3.6V (3.3V nominal). The
associated ground pins for this supply and the VDDCORE supply are the GND pins.

• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage
ranges from 1.08V and 1.32V, 1.2V nominal. The associated ground pin for this supply is the
GNDBU pin.

• VDDPLLA pin: Powers the PLLA cell; voltage ranges from 3.0V and 3.6V (3.3V nominal). The
associated ground pin for this supply is the GNDPLLA pin.

• VDDPLLB pin: Powers the PLLB cell and related internal loop filter cell; voltage ranges from
1.08V and 1.32V (1.2V nominal). The associated ground pin for this supply is the GNDPLLB
pin.

• VDDOSC pins: Powers the Main Oscillator cell; voltage ranges from 1.08V and 1.32V (1.2V
nominal). The associated ground pin for this supply is the GNDOSC pin.

• VDDOSC32 pins: Powers the 32 kHz cell; voltage ranges from 1.08V and 1.32V (1.2V
nominal). The associated ground pin for this supply is the GNDOSC32 pin.

• AVDD pin: Powers the 10-bit Analog to Digital Converter and associated cells; voltage ranges
from 3.0V and 3.6V (3.3V nominal). The associated ground pin for this supply is the AGND
pin.

5.2 Power Consumption
Note: The following figures are preliminary figures based on prototype silicon. They are subject to

change for the production silicon.

The AT91CAP7E consumes about 600 μA of static current on VDDCORE at typical conditions
(1.2V, 25°C).

On VDDBU, the current does not exceed 30 μA at typical conditions.

For dynamic power consumption, the AT91CAP7E consumes about 0.33 mW/MHz of power or
275 μA/MHz of current on VDDCORE at typical conditions (1.2V, 25°C) and with the ARM sub-
system running full-performance algorithm with on-chip memories, and no peripherals active.
14
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
6. I/O Line Considerations

6.1 JTAG Port Pins
TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors.

TDO and RTCK are outputs, driven at up to VDDIO, and have no pull-up resistor.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left uncon-
nected for normal operations.

The NTRST signal is described in the Reset Pins paragraph. All the JTAG signals are supplied
with VDDIO.

6.2 Test Pin
The TST pin is used for manufacturing test purposes when asserted high. It integrates a perma-
nent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left unconnected for normal
operations. Driving this line at a high level leads to unpredictable results.

This pin is supplied with VDDBU.

6.3 Reset Pins
NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven
with voltage at up to VDDIO.

NTRST is an input which allows reset of the JTAG Test Access port. It has no action on the
processor.

As the product integrates power-on reset cells, which manages the processor and the JTAG
reset, the NRST and NTRST pins can be left unconnected.

The NRST and NTRST pins both integrate a permanent pull-up resistor of 100 kΩ minimum to
VDDIO.

The NRST signal is inserted in the Boundary Scan.

6.4 PIO Controllers
All the I/O lines which are managed by a PIO Controller integrate a programmable pull-up resis-
tor of 100 kΩ minimum. Programming of this pull-up resistor is performed independently for each
I/O line through the PIO Controllers.

After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which
are multiplexed with the External Bus Interface signals that must be enabled as Peripheral at
reset. This is explicitly indicated in the column “Reset State” of the PIO Controller multiplexing
tables.

6.5 Shut Down Logic pins
The SHDN pin is an output only, which is driven by the Shut Down Controller only at low level. It
can be tied high with an external pull-up resistor at VDDBU only.
15
8549A–CAP–10/08

7. Processor and Architecture

7.1 ARM7TDMI Processor
• RISC Processor Based on ARMv4T Von Neumann Architecture

– Runs at up to 80 MHz, providing up to 72 MIPS

• Two instruction sets

– ARM high-performance 32-bit Instruction Set

– Thumb high code density 16-bit Instruction Set
• Three-stage pipeline architecture

– Instruction Fetch (F)

– Instruction Decode (D)
– Execute (E)

7.2 Debug and Test Features
• Integrated embedded in-circuit emulator

– Two watchpoint units

– Test access port accessible through a JTAG protocol

– Debug communication channel
• Debug Unit

– Two-pin UART

– Debug communication channel interrupt handling
– Chip ID Register

• IEEE1149.1 JTAG Boundary-scan on all digital pins

7.3 Bus Matrix
• 6 Layers Matrix, handling requests from 6 masters

• Programmable Arbitration strategy

– Fixed-priority Arbitration

– Round-Robin Arbitration, either with no default master, last accessed default master
or fixed default master

• Burst Management

– Breaking with Slot Cycle Limit Support

– Undefined Burst Length Support

• One Address Decoder provided per Master

– Three different slaves may be assigned to each decoded memory area: one for
internal boot, one for external boot, one after remap

• Boot Mode Select

– Non-volatile Boot Memory can be internal or external

– Selection is made by BMS pin sampled at reset

• Remap Command

– Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory

– Allows Handling of Dynamic Exception Vectors
16
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
7.3.1 Matrix Masters
The Bus Matrix of the AT91CAP7E manages four Masters, which means that each master can
perform an access concurrently with others, as long as the slave it accesses is available.

Each Master has its own decoder, which is defined specifically for each master. In order to sim-
plify the addressing, all the masters have the same decoding. There are two independent
masters available for an external FPGA.

7.3.2 Matrix Slaves
The Bus Matrix of the AT91CAP7E manages nine Slaves. Each Slave has its own arbiter, thus
allowing to program a different arbitration per Slave.

There are four independent slaves available for the FPGA Interface.

7.4 Peripheral DMA Controller
• Acting as one Matrix Master

• Allows data transfers from/to peripheral to/from any memory space without any intervention
of the processor.

• Next Pointer Support, forbids strong real-time constraints on buffer management.

• 9 channels

– Two for each USART

– Two for the Debug Unit

– Two for each Serial Peripheral Interface

– One for the Analog to Digital Converter (ADC)

– Two for peripherals implemented through the FPGA Interface

Table 7-1. List of Bus Matrix Masters

Master 0 ARM7TDMI

Master 1 Peripheral DMA Controller

Master 2 FPGA Master A

Master 3 FPGA Master B

Table 7-2. List of Bus Matrix Slaves

Slave 0 Internal SRAM 96 Kbytes

Slave 1 Internal SRAM 64 Kbytes

Slave 2 Internal ROM 256 Kbytes

Slave 3 FPGA Slave A

Slave 4 FPGA Slave B

Slave 5 FPGA Slave C

Slave 6 FPGA Slave D

Slave 7 Unavailable

Slave 8 External Bus Interface

Slave 9 Peripheral Bridge
17
8549A–CAP–10/08

8. Memories

8.1 Embedded Memories
• 256 Kbyte Fast ROM

– Single Cycle Access at full matrix speed

• 96 Kbyte Fast SRAM

– Single Cycle Access at full matrix speed

• 64 Kbyte Fast SRAM

– Single Cycle Access at full matrix speed

8.2 Memory Mapping
A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the
Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional
features.

Decoding breaks up the 4G bytes of address space into 16 banks of 256M bytes. The banks 1 to
9 are directed to the EBI that associates these banks to the external chip selects NCS0 to
NCS7. The bank 0 is reserved for the addressing of the internal memories, and a second level of
decoding provides 1M byte of internal memory area. The bank 15 is reserved for the peripherals
and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master
requesting such an access.

Figure 8-1. AT91CAP7E Product Memory Mapping

Each Master has its own bus and its own decoder, thus allowing a different memory mapping
per Master. However, in order to simplify the mappings, all the masters have a similar address
decoding.

Regarding Master 0 (ARM7TDMI), two different Slaves are assigned to the memory space
decoded at address 0x0: one for internal boot and one for external boot.

0x0000 0000

0x0FFF FFFF

0x1000 0000

0x8FFF FFFF

0xEFFF FFFF

0xF000 0000

0xFFFF FFFF

256M Bytes

8 x 256M Bytes
2,048M bytes

256M Bytes

6 x 256M Bytes
1,536M Bytes

Internal Memories

External Bus Interface
Chip Select 0 to 7

Undefined
(Abort)

Internal Peripherals

0x9000 0000
18
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
8.3 Internal Memory Mapping

8.3.1 Internal 160-kBytes Fast SRAM
The AT91CAP7E embeds 160-Kbytes of high-speed SRAM configured in blocks of 96 KB and
64KB. When accessed from the AHB, each SRAM block is independently single cycle accessi-
ble at full matrix speed (MCK).

8.3.2 Boot Memory
The AT91CAP7E Matrix manages a boot memory which depends on the level on the pin BMS at
reset. The internal memory area mapped between address 0x0 and 0x000F FFFF is reserved at
this effect.

If BMS is detected at logic 0, the boot memory is the memory connected on the Chip Select 0 of
the External Bus Interface. The default configuration for the Static Memory Controller, byte
select mode, 16-Bit data bus, Read/Write controlled by Chip Select, allows to boot on 16Bit non-
volatile memory.

If BMS is detected at logic 1, the boot memory is the embedded ROM.

8.4 Boot Program
The internal 256 KB ROM is metal-programmable and each AT91CAP7E customer may develop
their own boot program using their own code or a combination of their own code and routines
available from Atmel.

8.5 External Memories Mapping
The external memories are accessed through the External Bus Interface. Each Chip Select line
has a 256-MByte memory area assigned.

Figure 8-2. AT91CAP7E External Memory Mapping

8.6 External Bus Interface
• Optimized for Application Memory Space support

0x1000 0000

0x1FFF FFFF

0x2000 0000

0x2FFF FFFF

0x3000 0000

0x3FFF FFFF

0x4000 0000

0x4FFF FFFF

0x5000 0000

0x5FFF FFFF

0x6000 0000

0x6FFF FFFF

0x7000 0000

0x7FFF FFFF

0x8000 0000

0x8FFF FFFF

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

EBI_NCS0

EBI_NCS1 or
EBI_SDCS

EBI_NCS2

EBI_NCS3

EBI_NCS4

EBI_NCS5

EBI_NCS6

CompactFlash EBI
Slot 0

SmartMedia or
NAND Flash EBI

CompactFlash EBI
 Slot 1

EBI_NCS7
19
8549A–CAP–10/08

• Integrates two External Memory Controllers:

– Static Memory Controller

– SDRAM Controller

• Additional logic for NANDFlash and CompactFlashTM

• Optional Full 32-bit External Data Bus

• Up to 26-bit Address Bus (up to 64MBytes linear per chip select)

• Up to 6 chips selects, Configurable Assignment:

– Static Memory Controller on NCS0

– SDRAM Controller or Static Memory Controller on NCS1

– Static Memory Controller on NCS2

– Static Memory Controller on NCS3, Optional NAND Flash support

– Static Memory Controller on NCS4 - NCS5, Optional CompactFlashM support

8.6.1 Static Memory Controller

• 8-, 16- or 32-bit Data Bus

• Multiple Access Modes supported

– Byte Write or Byte Select Lines

– Asynchronous read in Page Mode supported (4- up to 32-byte page size)

• Multiple device adaptability

– Compliant with LCD Module

– Control signals programmable setup, pulse and hold time for each Memory Bank

• Multiple Wait State Management

– Programmable Wait State Generation

– External Wait Request

– Programmable Data Float Time

• Slow Clock mode supported

8.6.2 SDRAM Controller

• Supported devices:

– Standard and Low Power SDRAM (Mobile SDRAM)

• Numerous configurations supported

– 2K, 4K, 8K Row Address Memory Parts

– SDRAM with two or four Internal Banks

– SDRAM with 16- or 32-bit Data Path

• Programming facilities

– Word, half-word, byte access

– Automatic page break when Memory Boundary has been reached

– Multi-bank Ping-pong Access

– Timing parameters specified by software

– Automatic refresh operation, refresh rate is programmable

• Energy-saving capabilities
20
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
– Self-refresh, power down and deep power down modes supported

• Error detection

– Refresh Error Interrupt

• SDRAM Power-up Initialization by software

• CAS Latency of 1, 2 and 3 supported

• Auto Precharge Command not used
21
8549A–CAP–10/08

9. System Controller
The System Controller is a set of peripherals, which allow handling of key elements of the sys-
tem, such as power, resets, clocks, time, interrupts, watchdog, etc.

The System Controller User Interface also includes control registers for configuring the AHB
Matrix and the chip configuration. The chip configuration registers allow setting the EBI chip
select assignment for external memories.
22
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
9.1 System Controller Block Diagram

Figure 9-1. AT91CAP7E System Controller Block Diagram

NRST

SLCK

Advanced
Interrupt
Controller

Real-Time
Timer 0

Periodic
Interval
Timer

Reset
Controller

PA0-PA31

periph_nreset

System Controller

Watchdog
Timer

wdt_fault
WDRPROC

PIO
Controllers

Power
Management

Controller

XIN

XOUT

PLLRCA

MAINCK

PLLACK

pit_irq
MCK

proc_nreset

wdt_irq

periph_irq[2..3]periph_nreset

periph_clk[2..29]

PCK

MCK

pmc_irq

OTGCK

nirq
n q

rtt0_irq

Embedded
Peripheralsperiph_clk[2..3]

pck[0-3]

in
out
enable

ARM7TDMI

SLCK

SLCK

irq0-irq1
q

irq0-irq1
q

periph_irq[4..10]

periph_irq[2..29]

int

int

periph_nreset

periph_clk[4..10]

jtag_nreset

por_ntrst

proc_nreset

periph_nreset

dbgu_txd
dbgu_rxd

pit_irq

rtt1_irq

dbgu_irq
pmc_irq

rstc_irq

wdt_irq

rstc_irq

SLCK

Boundary Scan
TAP Controller

jtag_nreset

debug

PCK

debug
idle

debug

Bus Matrix

MCK

periph_nreset

proc_nreset

backup_nreset

periph_nreset

idle

Debug
Unit

dbgu_irqMCK

dbgu_rxd

periph_nreset
dbgu_txd

rtt0_alarm

Shut-Down
Controller

SLCK

rtt0_alarm

backup_nreset

SHDN

WKUP

20 General-Purpose
Backup Registers

backup_nreset

XIN32

XOUT32

PLLBCK

PB0-PB31

VDDBU Powered

VDDCORE Powered

ntrst

VDDCORE
POR

MAIN
OSC

PLLA

VDDBU
POR

SLOW
CLOCK
OSC

PLLB

por_ntrst

VDDBU

VDDCORE
battery_save

Voltage
Controller

battery_save

Real-Time
Timer 1

rtt1_irqSLCK

backup_nreset rtt1_alarm

rtt0_irq

UDPCK

rtt1_alarm

USB
Device

Port

UDPCK

periph_nreset

periph_clk[24]

periph_irq[24]

FPGA Interface

periph_irq[11..29]

periph_nreset

periph_clk[11..29]

PLLACK

SLCK

MAINCK

PCK

MCK

PLLBCK

UDPCKUHPCK

UHPCK
23
8549A–CAP–10/08

9.2 System Controller Mapping
The System Controller’s peripherals are all mapped within the highest 16K bytes of address
space, between addresses 0xFFFF C000 and 0xFFFF FFFF.

However, all the registers of System Controller are mapped on the top of the address space.
This allows addressing all the registers of the System Controller from a single pointer by using
the standard ARM instruction set since the Load/Store instructions have an indexing mode of +/-
4kbytes. Figure 9-2 shows where the User Interfaces for the System Controller peripherals fit
into the memory map (relative to bus matrix and EBI (SMC, SDRAMC).

Figure 9-2. System Controller Mapping
Peripheral Name Size

0xFFFF FD30

0xFFFF FFFF

0xFFFF FDB0

0xFFFF FD60

0xFFFF FD40

0xFFFF FD20

0xFFFF FD00

0xFFFF FC00

0xFFFF FCFF

16 bytes/4 words

512 bytes/128 words

Reset Controller

Power Management Controller

Reserved

Parallel I/O Controller B

Parallel I/O Controller A

512 bytes/128 wordsPMC

Reserved

PIOB

PIOA

RSTC

Reserved

0xFFFF F800

0xFFFF FBFF

Debug UnitDBGU

0xFFFF F600

0xFFFF F7FF

Matrix

512 bytes/128 words

MATRIX

0xFFFF F400

0xFFFF F5FF

512 bytes/128 words

0xFFFF FD50

16 bytes/4 wordsShut-Down ControllerSHDC

16 bytes/4 wordsReal-Time Timer 0 RTT0

16 bytes/4 wordsPeriodic Interval Timer PIT

16 bytes/4 wordsWatchdog Timer WDT

80 bytes/20 wordsGeneral-Purpose Backup RegistersGPBR

0xFFFF F200

0xFFFF F3FF

512 bytes/128 words

0xFFFF EE00

0xFFFF F1FF

Static Memory Controller

512 bytes/128 words

SMC
0xFFFF EC00

0xFFFF EDFF

SDRAM Controller

512 bytes/128 words

SDRAMC

0xFFFF C000

Reserved

2 bytes/1 words
(3words reserved)

Oscillator Mode RegisterOSCMR

0xFFFF E9FF
0xFFFF EA00

0xFFFF EBFF
512 bytes/128 words

0xFFFF EFFF

AIC Advanced Interrupt Controller

0xFFFF FD10

Reserved

0xFFFF F000
24
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
9.3 Reset Controller
• Based on two Power-on-Reset cells

– one on VDDBU and one on VDDCORE

• Status of the last reset

– Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software
reset, user reset or watchdog reset

• Controls the internal resets and the NRST pin output

– Allows shaping a reset signal for the external devices

9.4 Shut Down Controller
• Shut-Down and Wake-Up logic

– Software programmable assertion of the SHDN open-drain pin

– De-assertion Programmable on a WKUP pin level change or on alarm

9.5 Clock Generator
• Embeds the Low Power, fast start-up 32kHz RC Oscillator

– Provides the default Slow Clock SLCK to the system

– The SLCK is required for AT91CAP7E to start-up because it is the default clock for
the ARM7TDMI at power-up.

• Embeds the Low Power 32768Hz Slow Clock Oscillator

– Requires an external 32768Hz crystal

– Optional Slow Clock SLCK source when a real-time timebase is required

• Embeds the Main Oscillator

– Requires an external crystal. For systems using the USB features, 12MHz is
recommended.

– Oscillator bypass feature

– Supports 8 to 16MHz crystals. Recommend 12 MHz crystal if using the USB
features of AT91CAP7E.

– Generates input reference clock for the two PLLs.

• Embeds PLLA primarily for generating processor and master clocks. For full-speed operation
on the ARM7TDMI processor, this PLL should be programmed to generate a 160 MHz clock
that must then be divided in half to generate the 80 MHz PCK and related clocks.

– PLLA outputs an 80 to 240MHz clock

– Requires an external RC filter network

– PLLA has a 1MHz minimum input frequency

– Integrates an input divider to increase output accuracy

• Embeds PLLB primarily for generating a 96 MHz clock that is divided down to generate the
USB related clocks.

– PLLB uses an internal low-pass filter (LPF) and can output a 50 to 100 MHz clock

– PLLB and its internal low-pass filter (LPF) are tuned especially for generating a 96
MHz clock with a 12 MHz input frequency

– 12 MHz minimum input frequency
25
8549A–CAP–10/08

– Integrates an input divider to increase output accuracy

Figure 9-3. Clock Generator Block Diagram

9.6 Power Management Controller
• The Power Management Controller provides the following clocks as shown in Figure 7 below:

– the Processor Clock PCK

– the Master Clock MCK, in particular to the Matrix and the memory interfaces

– the USB Device Clock UDPCK

– independent peripheral clocks (periph_clk), typically at the frequency of MCK

– four programmable clock outputs: PCK0 to PCK3

• Five flexible operating modes:

– Normal Mode, processor and peripherals running at a programmable frequency

– Idle Mode, processor stopped waiting for an interrupt

– Slow Clock Mode, processor and peripherals running at low frequency

– Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency,
processor stopped waiting for an interrupt

– Backup Mode, Main Power Supplies off, VDDBU powered by a battery

Power
Management

Controller

XIN

XOUT

PLLRCA

Slow Clock
SLCK

Main Clock
MAINCK

PLLA Clock
PLLACK

ControlStatus

PLL and
Divider B

PLLB Clock
PLLBCK

XIN32

XOUT32

Slow Clock
Oscillators
RC & XTAL

Main
Oscillator

PLL and
Divider A

Clock Generator

LPF
26
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 9-4. AT91CAP7E Power Management Controller Block Diagram

9.7 Periodic Interval Timer
• Includes a 20-bit Periodic Counter, with less than 1μs accuracy

• Includes a 12-bit Interval Overlay Counter

• Real Time OS or Linux/WinCE compliant tick generator

9.8 Watchdog Timer
• 16-bit key-protected only-once-Programmable Counter

• Windowed, prevents the processor to be in a dead-lock on the watchdog access

9.9 Real-Time Timer
• One Real-Time Timer, allowing backup of time

– 32-bit Free-running, back-up Counter

– Integrates a 16-bit programmable prescaler running on the embedded 32.768Hz
oscillator

– Alarm Register capable to generate a wake-up of the system through the Shut Down
Controller

MCK

periph_clk[..]

int

SLCK
MAINCK
PLLACK

Prescaler
/1,/2,/4,...,/64

PCK
Processor

Clock
Controller

 Idle Mode
Master Clock Controller

Peripherals
Clock Controller

ON/OFF

USB Clock Controller

SLCK
MAINCK
PLLACK

Prescaler
/1,/2,/4,...,/64

Programmable Clock Controller

PLLBCK Divider
/1,/2,/4

pck[..]

PLLBCK

PLLBCK

UDPCK
ON/OFF

ON/OFF

UHPCK
ON/OFF
27
8549A–CAP–10/08

9.10 General-Purpose Backed-up Registers
• Twenty 32-bit backup general-purpose registers

9.11 Backup Power Switch
• Automatic switch of VDDBU to VDDCORE guaranteeing very low power consumption on

VDDBU while VDDCORE is present

9.12 Advanced Interrupt Controller
• Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor

• Thirty-two individually maskable and vectored interrupt sources

– Source 0 is reserved for the Fast Interrupt Input (FIQ)

– Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)

– Programmable Edge-triggered or Level-sensitive Internal Sources

– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive

• Two External Sources plus the Fast Interrupt signal

• 8-level Priority Controller

– Drives the Normal Interrupt of the processor

– Handles priority of the interrupt sources 1 to 31

– Higher priority interrupts can be served during service of lower priority interrupt

• Vectoring

– Optimizes Interrupt Service Routine Branch and Execution

– One 32-bit Vector Register per interrupt source

– Interrupt Vector Register reads the corresponding current Interrupt Vector

• Protect Mode

– Easy debugging by preventing automatic operations when protect models are
enabled

• Fast Forcing

– Permits redirecting any normal interrupt source on the Fast Interrupt of the
processor

9.13 Debug Unit
• Composed of two functions

– Two-pin UART

– Debug Communication Channel (DCC) support

• Two-pin UART

– Implemented features are 100% compatible with the standard Atmel USART

– Independent receiver and transmitter with a common programmable Baud Rate
Generator

– Even, Odd, Mark or Space Parity Generation

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Support for two PDC channels with connection to receiver and transmitter
28
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• Debug Communication Channel Support

– Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from
the ARM Processor’s ICE Interface

9.14 Chip Identification
• Chip ID: 83770904 (0x1000 0011 0111 0111 0000 1001 0000 0100). This value is stored in

the Chip ID Register (DBGU_CIDR) in the Debug Unit. The last 5 bits of the register are
reserved for a chip version number.

• JTAG ID: unique for each CAP7 personalization.

9.15 PIO Controllers
• Two PIO Controllers (PIOA and PIOB) included.

• Each PIO Controller controls up to 32 programmable I/O Lines

– PIOA controls 32 I/O Lines (PA0 - PA31)

– PIOB can control up to 32 of the MPIO Lines

• Fully programmable through Set/Clear Registers

• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)

– Input change interrupt

– Glitch filter

– Multi-drive option enables driving in open drain

– Programmable pull up on each I/O line

– Pin data status register, supplies visibility of the level on the pin at any time

• Synchronous output, provides Set and Clear of several I/O lines in a single write

• PIOA has multiplexing of two peripheral functions per I/O Line (see section 10.4.1 ”PIO
Controller A Multiplexing” on page 36)

• PIOB multiplexing is controlled by the FPGA Interface (see section 11.4.2 ”PIO Controller B
Multiplexing” on page 47)
29
8549A–CAP–10/08

9.16 User Interface

9.16.1 Special System Controller Register Mapping

9.16.2 Oscillator Mode Register
Register Name: SYSC_OSCMR

Access Type: Read/Write

Reset Value: 0x00000001

• OSC32K_RC_EN: Enable internal RC oscillator

0: No effect.

1: Enables the internal RC oscillator [enabled out of reset indicating system starts off of RC]

• OSC32K_XT_EN: Enable external crystal oscillator

0: No effect.

1: Enables the external crystal oscillator

• OSC32K_SEL: Slow clock source select

0: Selects internal RC as source of slow clock

1: Selects external crystal and source of slow

NOTE: After setting OSC32K_XT_EN bit, wait till 1.2s of on chip slow clock timing before setting OSC32K_SEL bit.

Table 9-1. Special System Controller Registers

Offset Register Name Access Reset Value

0x50 Oscillator Mode Register SYSC_OSCMR Read/Write 0x1

0x60 General Purpose Backup Register 1 SYSC_GPBR1 Read/Write 0x0

--- --- --- --- ---

0xAC General Purpose Backup Register 20 SYSC_GPBR20 Read/Write 0x0

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSC32K_SEL –
OSC32K_XT

_ EN
OSC32K_RC

_ EN
30
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
9.16.3 General Purpose Backup Register
Register Name: SYSC_GPBRx

Access Type: Read/Write

Reset Value: 0x0

• GPBRx: General Purpose Backup Register
These are user programmable registers that are powered by the backup power supply (VDDBU).

31 30 29 28 27 26 25 24

GPBRx

23 22 21 20 19 18 17 16

GPBRx

15 14 13 12 11 10 9 8

GPBRx

7 6 5 4 3 2 1 0

GPBRx
31
8549A–CAP–10/08

10. Peripherals

10.1 Peripheral Mapping
Both the standard peripherals and any APB peripherals implemented in the MPBlock are
mapped in the upper 256M bytes of the address space between the addresses 0xFFFA 0000
and 0xFFFE FFFF. Each User Peripheral is allocated 16K bytes of address space as shown
below in Figure 10-1.
32
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 10-1. AT91CAP7E Peripheral Mapping

Peripheral Name Size

16K Bytes

16K Bytes

16K Bytes

16K Bytes

0xFFFA 0000

0xFFFA 3FFF

TC0, TC1, TC2 Timer/Counter 0, 1 and 2

16K Bytes

16K Bytes

16K Bytes

16K Bytes

0xFFFA 4000

0xFFFA 7FFF

ADC Analog to Digital Converter

0xFFFB 4000

0xFFFB 7FFF

SPI0 Serial Peripheral Interface 0

0xFFFB 8000

0xFFFB BFFF

USART0 Universal Synchronous Asynchronous
Receiver Transmitter 0

0xFFFC 0000

0xFFFC 3FFF

USART1 Universal Synchronous Asynchronous
Receiver Transmitter 1

0xFFFC 4000

0xFFFC 7FFF

FPP1 FPGA Peripheral 1

0xFFFC FFFF

FPP2 FPGA Peripheral 2

FPP4 FPGA Peripheral 4

0xFFFB 3FFF

0xFFFA C000

0xFFFA FFFF

0xFFFB C000

0xFFFB FFFF

0xFFFC BFFF

FPP3 FPGA Peripheral 3 16K Bytes

FPP0 16K BytesFPGA Peripheral 0

16K Bytes

0xFFFA 8000

0xFFFA BFFF

UDP USB Device Port

0xFFFC C000
16K BytesFPP5 FPGA Peripheral 5

0xFFFB 0000

0xFFFC 8000

0xFFFD 0000
16K BytesFPP6 FPGA Peripheral 6

0xFFFD 4000
16K BytesFPP7 FPGA Peripheral 7

0xFFFD 8000
16K BytesFPP8 FPGA Peripheral 8

0xFFFD C000
16K BytesFPP9 FPGA Peripheral 9

0xFFFE 0000
16K BytesFPP10 FPGA Peripheral 10

0xFFFE 4000
16K BytesFPP11 FPGA Peripheral 11

0xFFFE 8000
16K BytesFPP12 FPGA Peripheral 12

0xFFFE C000
16K BytesFPP13 FPGA Peripheral 13

0xFFFD 3FFF

0xFFFD 7FFF

0xFFFD BFFF

0xFFFD FFFF

0xFFFE 3FFF

0xFFFE 7FFF

0xFFFE BFFF

0xFFFE FFFF
33
8549A–CAP–10/08

10.2 Peripheral Identifiers
The AT91CAP7E embeds some of the most common peripherals. Additional peripherals can be
readily implemented in the external FPGA by the customer, and mapped direcly on the APB.
The table below defines the Peripheral Identifiers of the AT91CAP7E. A peripheral identifier is
required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for
the control of the peripheral clock with the Power Management Controller.

Table 10-1. AT91CAP7E Peripheral Identifiers

Peripheral ID Peripheral Mnemonic Peripheral Name External Interrupt

0 AIC Advanced Interrupt Controller FIQ

1 SYSC System Controller

2 PIOA Parallel I/O Controller A

3 PIOB Parallel I/O Controller B

4 US0 USART 0

5 US1 USART 1

6 SPI0 Serial Peripheral Interface 0

7 TC0 Timer/Counter 0

8 TC1 Timer/Counter 1

9 TC2 Timer/Counter 2

10 UDP USB Device Port

11 ADC Analog to Digital Converter

12 FPP0 FPGA Peripheral 0

13 FPP1 FPGA Peripheral 1

14 FPP2 FPGA Peripheral 2

15 FPP3 FPGA Peripheral 3

16 FPP4 FPGA Peripheral 4

17 FPP5 FPGA Peripheral 5

18 FPP6 FPGA Peripheral 6

19 FPP7 FPGA Peripheral 7

20 FPP8 FPGA Peripheral 8

21 FPP9 FPGA Peripheral 9

22 FPP10 FPGA Peripheral 10

23 FPP11 FPGA Peripheral 11

24 FPP12 FPGA Peripheral 12

25 FPP13 FPGA Peripheral 13

26 FPMA FPGA Master A

27 FPMB FPGA Master B

28 N/A Not Available
34
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
10.3 Peripheral Interrupts and Clock Control

10.3.1 System Interrupt
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:

• the SDRAM Controller

• the Debug Unit

• the Periodic Interval Timer

• the Real-Time Timer

• the Watchdog Timer

• the Reset Controller

• the Power Management Controller

The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used
within the Advanced Interrupt Controller.

10.3.2 External Interrupts
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to
IRQ1, use a dedicated Peripheral ID. However, there is no clock control associated with these
peripheral IDs.

10.3.3 Timer Counter Interrupts
The three Timer Counter channels interrupt signals are OR-wired together to provide the inter-
rupt source 7 of the Advanced Interrupt Controller. This forces the programmer to read all Timer
Counter status registers before branching the right Interrupt Service Routine.

The Timer Counter channels clocks cannot be deactivated independently. Switching off the
clock of the Peripheral 7 disables the clock of the 3 channels.

10.4 Peripherals Signals Multiplexing on I/O Lines
The AT91CAP7E features two PIO controllers, PIOA which multiplexes the I/O lines of the stan-
dard peripheral set and PIOB which multiplexes the FPGA Interface through MPIO.

Each PIO Controller controls up to 32 lines. On PIOA, each line can be assigned to one of two
peripheral functions, A or B. The multiplexing table in the following paragraph define how the I/O
lines of the peripherals A and B are multiplexed on PIOA.

The column “Reset State” indicates whether the PIO Line resets in I/O mode or in peripheral
mode. If I/O is listed, the PIO Line resets in input mode with the pull-up enabled, so that the
device is maintained in a static state as soon as the reset is released. As a result, the bit corre-
sponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.

29 N/A Not Available

30 AIC Advanced Interrupt Controller IRQ0

31 AIC Advanced Interrupt Controller IRQ1

Table 10-1. AT91CAP7E Peripheral Identifiers (Continued)

Peripheral ID Peripheral Mnemonic Peripheral Name External Interrupt
35
8549A–CAP–10/08

If a signal name is listed in the “Reset State” column, the PIO Line is assigned to this function
and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories,
in particular the address lines, which require the pin to be driven as soon as the reset is
released. Note that the pull-up resistor is also enabled in this case.

10.4.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A

PIO Controller A

I/O Line Peripheral A Peripheral B Reset State

PA0 FIQ DBG_DRXD

PA1 NWAIT DBG_DTXD

PA2 NCS4/CFCS0 USART0_SCK0

PA3 CFCE1 USART0_RTS0

PA4 A25/CFRNW USART0_CTS0

PA5 NANDOE USART0_TXD0

PA6 NANDWE USART0_RXD0

PA7 NCS6 SPI_MISO

PA8 NCS7 SPI_MOSI

PA9 ADCTRIG SPI_SPCK

PA10 IRQ0 SPI_NPCS0

PA11 IRQ1 SPI_NPCS1

PA12 NCS5/CFCS1 SPI_NPCS2

PA13 CFCE2 SPI_NPCS3

PA14 A23 APMC_PCK0

PA15 A24 APMC_PCK1

PA16 D16 APMC_PCK2

PA17 D17 APMC_PCK3

PA18 D18 USART1_SCK1

PA19 D19 USART1_RTS1

PA20 D20 USART1_CTS1

PA21 D21 USART1_TXD1

PA22 D22 USART1_RXD1

PA23 D23 TIMER0_TCLK0

PA24 D24 TIMER1_TCLK1

PA25 D25 TIMER2_TCLK2

PA26 D26 TIMER0_TIOA0

PA27 D27 TIMER0_TIOB0

PA28 D28 TIMER1_TIOA1
36
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
10.4.2 PIO Controller B Multiplexing

• The PIOB Port is part of the FPGA Interface, and its multiplexing is determined by that
interface (see section 11.4.2 ”PIO Controller B Multiplexing” on page 47).

10.4.3 Resource Multiplexing

10.4.3.1 EBI
If not required, the NWAIT function (external wait request) can be deactivated by soft-ware
allowing this pin to be used as a PIO. Use of the NWAIT function prevents use of the Debug
Unit.

10.4.3.2 32-bit Data Bus
Using a 32-bit Data Bus prevents:

• using the three Timer Counter channels’ outputs and trigger inputs

• using the USART1

• using two of the clock outputs (APMC_PCK2 and APMC_PCK3)

10.4.3.3 NAND Flash Interface
Using the NAND Flash interface prevents using the NCS3 and USART0.

10.4.3.4 Compact Flash Interface
Using the CompactFlash interface prevents using the USART0.

10.4.3.5 SPI
Using the SPI prevents use of NCS6, NCS7, and the ADC external trigger.

10.4.3.6 USARTs
Using the USART0 prevents use of CompactFlash or NAND Flash.

Using the USART1 prevents using a full 32-bit bus for the EBI.

10.4.3.7 Clock Outputs
Using the clock outputs prevents use of either higher EBI address bits or a full 32-bit data bus
(see table 10-2).

10.4.3.8 Interrupt Lines
Using FIQ prevents using the Debug Unit.

Using IRQ0 prevents the use of SPI_NPCS0.

Using IRQ1 prevents the use of SPI_NPCS1.

PA29 D29 TIMER1_TIOB1

PA30 D30 TIMER2_TIOA2

PA31 D31 TIMER2_TIOB2

Table 10-2. Multiplexing on PIO Controller A

PIO Controller A

I/O Line Peripheral A Peripheral B Reset State
37
8549A–CAP–10/08

10.5 Embedded Peripherals Overview

10.5.1 Serial Peripheral Interface

• Supports communication with serial external devices

– Four chip selects with external decoder support allow communication with up to 15
peripherals

– Serial memories, such as DataFlash and 3-wire EEPROMs

– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

– External co-processors

• Master or slave serial peripheral bus interface

– 8- to 16-bit programmable data length per chip select

– Programmable phase and polarity per chip select

– Programmable transfer delays between consecutive transfers and between clock
and data per chip select

– Programmable delay between consecutive transfers

– Selectable mode fault detection

• Very fast transfers supported

– Transfers with baud rates up to MCK

– The chip select line may be left active to speed up transfers on the same device

10.5.2 USART

• Programmable Baud Rate Generator

• 5- to 9-bit full-duplex synchronous or asynchronous serial communications

– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode

– Parity generation and error detection

– Framing error detection, overrun error detection

– MSB-first or LSB-first

– Optional break generation and detection

– By 8 or by-16 over-sampling receiver frequency

– Hardware handshaking RTS-CTS

– Receiver time-out and transmitter time-guard

– Optional Multi-drop Mode with address generation and detection

– Optional Manchester Encoding

• RS485 with driver control signal

• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit

• IrDA modulation and demodulation

– Communication at up to 115.2 Kbps

• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo
38
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
10.5.3 Timer Counter

• Three 16-bit Timer Counter Channels

• Wide range of functions including:

– Frequency Measurement

– Event Counting

– Interval Measurement

– Pulse Generation

– Delay Timing

– Pulse Width Modulation

– Up/down Capabilities

• Each channel is user-configurable and contains:

– Three external clock inputs

– Five internal clock inputs

– Two multi-purpose input/output signals

• Two global registers that act on all three TC Channels

10.5.4 USB Device Port

• USB V2.0 full-speed compliant, 12 MBits per second

• Embedded USB V2.0 full-speed transceiver

• Embedded 2,432-byte dual-port RAM for endpoints

• Suspend/Resume logic

• Ping-pong mode (two memory banks) for isochronous and bulk endpoints

• Six general-purpose endpoints

– Endpoint 0 and 3: 64 bytes, no ping-pong mode

– Endpoint 1 and 2: 64 bytes, ping-pong mode

– Endpoint 4 and 5: 512 bytes, ping-pong mode

10.5.5 Analog to Digital Converter

• 10-bit Successive Approximation Register (SAR) ADC based on thermometric-resistive

• Up to 440 kSamples/sec.

• Up to 8 independent analog input channels

• Low active power: < 2 mW

• Low power stand-by mode

• External voltage reference of 2.6V to analog supply for better accuracy

• + 2LSB Integral Non-Linearity (INL), + 0.9 LSB Differential Non-Linearity (DNL)

• Individual enable and disable of each channel

• Multiple trigger sources:

– Hardware or software trigger

– External trigger pin

• Sleep Mode and conversion sequencer

– Automatic wakeup on trigger and back to sleep mode after conversions of all
enabled channels
39
8549A–CAP–10/08

40
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
11. FPGA Interface (FPIF)

11.1 Description
The FPGA Interface (FPIF) module provides a means to connect an external FPGA directly to
the AT91CAP7E internal AHB Bus. This interface is implemented in the metal-programmable
logic block (MP Block) that is provided as part of the AT91CAP7S customizable microcontroller
platform. Therefore the interface is constrained to access the AHB Bus through the Masters and
Slaves already pre-defined for the MP block.

• The FPGA interface uses 82 of the metal-programmable I/O pads (MPIO’s) provided on
the CAP7 platform, and it provides FPGA access to the following MP block features:

• 2 AHB Masters

• 4 AHB Slaves

• 1 AHB Slave to remap the ROM using an external ZBT RAM through the FPGA (For
CAP7 Emulation purposes). Programmable ROM remap feature at startup.

• 14 APB’s slaves

• 2 DMA full duplex channels

• Up to 13 priority encoded IRQ’s

• 2 unencoded IRQ’s for DMA transfers

• 32 bits PIO (Shared I/O)

11.2 System Requirements and Integration
The FPGA interface is implemented using several serializers that encode/decode all the traffic
between the CAP7E and the FPGA. In order to have proper communication and synchronization
between both devices, the following requirements must be met:

1. The FPGA being connected to CAP7E must be capable of handling skew clock balancing
and latency cancellation. For example in a Xilinx FPGA, the use of DCM’s is mandatory.

2. The FPGA must provide the configuration modes and a reset to the CAP7E.

3. The FPGA must provide the serial communication clock to CAP7E.

4. The frequency for the serializer clock can be as fast as 100Mhz for the commercial tem-
perature/voltage/process range.

5. The ratio between the internal CAP7E AHB Master Clock (MCK) and the FPGA Interface
Serial Clock (FPIF_SCLK) should be approximately 0.8 or lower (MCK / FPIF_SCLK).

6. All the logic added to the FPGA must utilize the Atmel-provided encoding/decoding logic
to ensure proper communication with CAP7E. Currently only Altera and Xilinx FPGA’s
are supported, but other FPGA’s may be supported in the future.

7. A template is provided to instantiate the AHB Masters and Slaves with the FPGA inter-
face.

ATMEL provides some examples of how to integrate logic in the FPGA using the CAP7E FPGA
interface. Figure 11-1 shows a system diagram of the CAP7E and an FPGA.
41
8549A–CAP–10/08

Figure 11-1. .CAP7E and FPGA System Diagram

Note: The external ZBT-RAM and NVM/SDRAM/SRAM are optional, based on applications and system
requirements

The module called “Custom MP” shown inside the FPGA is logic from an RTL template provided
to simplify the integratration of AHB or APB peripherals. Using “Custom MP” will also make a
migration from a CAP7E to a fully customized CAP7 solution much easier since modules are
connected the same way in the wrapper for the CAP7 MP block.

All the RTL for the interface targeted for the FPGA and additional modules such as a HZBT,
AHB/APB bridge, etc. provided by ATMEL contain all the proper constraints for each supported
FPGA vendor. Additional customer-specific logic can also be added to the FPGA.

11.3 Functional Description
The FPGA Interface includes logic that encodes or decodes the internal AHB transactions.
The encoded/decoded data is transferred through MPIO’s using dedicated serializers for
each master and slave. Due to the large number of bits to be transferred, a single transfer
will take several AHB clock cycles. The specific number of clock cycles depends on the ratio
between the CAP7E MCK and FPIF_SCLK and the ratio between the FPGA AHB clock and
the FPIF_SCLK. The lower those two ratios are, the fewer AHB clocks it will take for a single
transfer.

Additional NON-AHB/APB Logic

ARM7TDMI

APB

IC
E

6-layer A
H

B
 M

atrix

JTA
G

A
H

B
/A

P
B

 B
ridge

P
eripheral D

M
A

C
ontroller

256K
 R

O
M

EBI

96KB SRAM

64KB SRAM

CAP7E

FPGA

Custom MP

HZBT

A
H

B
/A

P
B

 B
rid

ge

CAP7E-Ctrol

AHB’s

2 AHB Masters

4 AHB Slaves

14 APB’s Slaves

2 PDC Channels

ZBT
RAM

NVM / SDRAM / SRAM

ADC

USART

USART

TIMERS

PIO

SPI

USB

R
T

T

G
P

B
R

P
O

R

S
H

W
D

C

32K

O
S

C

P
IT

A
IC

P
LL

P
LL

M
ain

O
S

C

W
D

T
P

M
C

P
O

R

FPGA
INTERFACE FP

G
A

IN
TE

R
FA

C
E

PDC IRQ
42
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
NOTE The AHB master clock on the CAP7E is independent from the AHB clock on the
FPGA. Therefore, the FPGA can run at a different frequency than the CAP7E.

11.3.1 Interface Modules

Each serializer block on CAP7E and FPGA includes a FSM (Finite State Machine) that can
communicate with the AHB bus. Thus, the interface can handle simultaneous transfers from
either side eliminating the common bottleneck found using other interface types such as EBI
or PIO.

By using the dedicated DMA channels (PDC), the overall system performance and band-
width is greatly improved. The ARM7TDMI need not be burdened with transferring data to or
from the FPGA but can be reserved for more intense processing.

Figure 11-2 shows a top level description for both interfaces (CAP7E and FPGA).

Figure 11-2. FPGA Interface architecture

11.3.2 Serializer Modules

The Serializer Module handles all the AHB and serial communications. It contains 2 main
sub-modules, a finite state machine (FSM) and a shifter.

• FSM: This block communicates with the AHB bus. When a master initiates a transfer
(read/write operation), the FSM inserts any necessary wait states using HREADY to
comply with the AHB protocol. The number of wait cycles inserted by the FSM depends
upon the two ratios between the CAP7E and FPGA AHB clocks and the FPGA Interface
Serial Clock (FPIF_SCLK). Therefore, the smaller those ratios, the less number of wait
states are inserted.

FPIF Serial Clock

FPIF Reset
CAP7E Ctrl AH

B/APB Bridge

modes
PDC Channels

S0

S1

S0

S0

S1

S0

S1

S0

S0

S1

S0

S1

S0

S1

CAP7E FPGA

S0

S0

CAP7E
Internal

AHB

FPGA
Internal
AHB

ZBT Interface

Masters A-B

Slaves A-B

Slaves C-D

ZBT Interface

Masters A-B

Slaves A-B

Slaves C-D

APB’s

PDC IRQ

APB’s

I
R
Q
‘s

P
D
C

PIO
 B
43
8549A–CAP–10/08

• Shifter: This block is controlled by the FSM, and it handles all the data shifting
(serializing) between the CAP7E-FPGA and transfers 2 bits per cycle. If the FPIF_SCLK
rate is set @100mhz, then the shifters transfer 200Mbps.

11.3.3 Serializer Programmability

In order to maximize the number of I/O supported, modules that handle the Masters-A/B,
Slaves-A/B and Slaves C/D, are programmable at reset time through the CAP7E Control
module in the FPGA. This programmability allows the user to choose whether or not to use
“all” 10 I/O lines for a single serial configuration. In Figure 11-3, the serial module is shown
configured to handle only 1 AHB interface. For example, if the user wants to use only AHB
master A, then the appropriate serial module will need to be configured by setting the Master
mode configuration in the CAP7E Control module to Single Master Mode, which will improve
the number of bits transferred between shifters and speed-up the transfers between the
CAP7E and FPGA.

Figure 11-3. Single Master Mode

Another option is to configure the serial module to handle 2 AHB interfaces in Dual Master
Mode. Here the 10 I/O lines are shared between the 2 AHB (Masters/Slaves).

In this case, the data transfer rate between the CAP7E and the FPGA is reduced, but the
data bandwidth increases because now 2 AHB interfaces are enabled.

Figure 11-4 shows how the Dual Master Mode uses half of the dedicated I/O for another AHB
interface.

CAP7E
AHB

FPGA
AHB

S0

S1
CAP7E FSM

CAP7E AHB CLK

FPIF Serial Clock

Control

All I/O lines for S0

FPGA AHB CLK

Shifter Shifter

S0

S1
FPGA FSM
44
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 11-4. Dual Master Mode

11.3.4 Transfer Timing

As mentioned previously, the number of clocks per transfer and therefore the effective trans-
fer speed depends upon the two ratios between the CAP7E and FPGA AHB clock frequen-
cies and the FPIF_SCLK. In addition, the Master Mode selection affects the effective transfer
speed as follows:

• Single Master Mode: Takes 4 FPIF_SCLK cycles to transfer data for 1 AHB interface.
See t2 and t3 on Figure 11-5 below.

• Dual Master Mode: Takes 8 FPIF_SCLK cycles to transfer all AHB data of 2 AHB
interfaces.

Figure 11-5. Read/Write timing for Single Master Mode

Figure 11-5 shows all the timing for a transfer between the CAP7E and the FPGA.

• t1: Time for a standard 2 cycles AHB

• t2: Time to transfer the request to FPGA (4 cycles single AHB interface, 8 cycles dual
AHB interface).

CAP7E
AHB

FPGA
AHB

S0

S1
CAP7E FSM

CAP7E AHB CLK

FPIF Serial Clock

Control

S0

S1

FPGA AHB CLK

Shifter Shifter

S0

S1
FPGA FSM

Serial Data to FPGA

Serial Data to CAP7E

FPIF_SCLK

HADDR

Ctrl

HWDATA

HRDATA

Response

A

C

D

D

t1 t2 t3 t4 t5

HREADY

t6
45
8549A–CAP–10/08

• t3: Time for FPGA-Peripheral response

• t4: Time to transfer response back to CAP7E (4 cycles single AHB interface, 8 cycles
dual AHB interface)

• t5: Time to read back the response/data from FPGA to the internal CAP7E AHB bus

• t6: Time for introduced wait cycles

An approximation formula for the access time, from the ARM inside the CAP7E to the pe-
ripherals in the FPGA is shown below:

Taccess = t1 + t2 + t3 + t4 + t5

11.4 Programmability Options
Inside the FPGA, the module called “CAP7E Control”, produces a reset and provides the dif-
ferent modes under reset conditions for the CAP7E. The RTL provided by ATMEL lets the
user configure their FPGA interface. By default, all mode bits are zeroes.

11.4.1 Mode-Bits

The following table shows the description and value for the emulation/modes bits supported
by CAP7E.

Mode-Bit Description 0 1

0 Internal ROM select Use internal ROM Use external ZBT

1 Master mode select Single Master Mode
- use only Master A

Dual Master Mode -
use Masters A and B

2 Slave mode select 1 SlaveA Mode - use
only Slave A

SlaveA-B Mode - use
Slaves A and B

3 Slave mode select 2 SlaveC Mode - use
only Slave C

SlaveC-D Mode - use
Slaves C and D

4 PIOB mode select Use PIOB Use FPIF IRQ’s,
PDC, and APB bridge

5 CAP7 in ARM MODE
used for emulation of

CAP7 only

CAP7E mode CAP7-ARM emula-
tion mode

6 Disable Pullups Use Pull-Ups Disable-Pullups

7 ADC / LVDS Select
used for emulation of

CAP7 only

Use ADC Use LVDS

Table 11-1. Mode-bits description
46
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
11.4.2 PIO Controller B Multiplexing

Table 11-2. Multiplexing on PIO Controller B

PIO Controller B

I/O Line PIO Mode APB Mode Reset State

MPIO00 PB0 FPP_IRQ_ENC0

MPIO01 PB1 FPP_IRQ_ENC1

MPIO02 PB2 FPP_IRQ_ENC2

MPIO03 PB3 FPP_IRQ_ENC3

MPIO04 PB4 FPP6_IRQ

MPIO05 PB5 FPP7_IRQ

MPIO06 PB6
FPP6_TX_BFFR_
EMPTY

MPIO07 PB7
FPP6_RX_BFFR_
FULL

MPIO08 PB8
FPP6_CHNL_TX_
END

MPIO09 PB9
FPP6_CHNL_RX
_END

MPIO10 PB10 FPP6_TX_RDY

MPIO11 PB11 FPP6_RX_RDY

MPIO12 PB12 FPP6_TX_SIZE0

MPIO13 PB13 FPP6_TX_SIZE1

MPIO14 PB14 FPP6_RX_SIZE0

MPIO15 PB15 FPP6_RX_SIZE1

MPIO16 PB16
FPP7_TX_BFFR_
EMPTY

MPIO17 PB17
FPP7_RX_BFFR_
FULL

MPIO18 PB18
FPP7_CHNL_TX_
END

MPIO19 PB19
FPP7_CHNL_RX
_END

MPIO20 PB20 FPP7_TX_RDY

MPIO21 PB21 FPP7_RX_RDY

MPIO22 PB22 FPP7_TX_SIZE0

MPIO23 PB23 FPP7_TX_SIZE1

MPIO24 PB24 FPP7_RX_SIZE0

MPIO25 PB25 FPP7_RX_SIZE1

MPIO26 PB26 APB_C

MPIO27 PB27 APB_D0
47
8549A–CAP–10/08

11.4.3 Other MPIO Signal Assignments/Multiplexing

MPIO28 PB28 APB_D1

MPIO29 PB29 APB_A0

MPIO30 PB30 APB_A1

MPIO31 PB31 APB_START

Table 11-2. Multiplexing on PIO Controller B

PIO Controller B

I/O Line PIO Mode APB Mode Reset State

Table 11-3. MPIO Signal Assignments/Multiplexing

I/O Line Single Mode Dual Mode

MPIO32 MA_C2 MB_C

MPIO33 MA_C1 MB_D0

MPIO34 MA_D0 MB_D1

MPIO35 MA_D1 MB_A0

MPIO36 MA_D2 MB_A1

MPIO37 MA_D3 MA_C

MPIO38 MA_A0 MA_D

MPIO39 MA_A1 MA_D1

MPIO40 MA_A2 MA_A0

MPIO41 MA_A3 MA_A1

MPIO42 MA_START MA_START

MPIO43 MB_START MB_START

MPIO44 SA_C2 SB_C

MPIO45 SA_C1 SB_D0

MPIO46 SA_D0 SB_D1

MPIO47 SA_D1 SB_A0

MPIO48 SA_D2 SB_A1

MPIO49 SA_D3 SA_C

MPIO50 SA_A0 SA_D0

MPIO51 SA_A1 SA_D1

MPIO52 SA_A2 SA_A0

MPIO53 SA_A3 SA_A1

MPIO54 SA_START SA_START

MPIO55 SB_START SB_START

MPIO56 SC_C2 SD_C

MPIO57 SC_C1 SD_D0
48
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
11.5 Interfacing using PIO
An FPGA interace can also be created using PIO’s (Programmable Input/Outputs). This ap-
proach is relatively simple, and most of the hard work is done by software. However, the
ARM processor must move the data to/from the PIO and generate all the necessary signal-
ing on PIO for the FPGA to properly handle the transfers being made.

This kind of interface is easy to implement, however in the FPGA special logic has to be im-
plemented to decode all the traffic generated by the PIO. The traffic from the standard mi-
crocontroller to the FPGA is very likely to be completely asynchronous, so the FPGA must
be able to oversample the control signals from the micro, otherwise the FPGA will miss the
time window and the data will not arrive at its final destination inside the FPGA.

MPIO58 SC_D0 SD_D1

MPIO59 SC_D1 SD_A0

MPIO60 SC_D2 SD_A1

MPIO61 SC_D3 SC_C

MPIO62 SC_A0 SC_D0

MPIO63 SC_A1 SC_D1

MPIO64 SC_A2 SC_A0

MPIO65 SC_A3 SC_A1

MPIO66 SC_START SC_START

MPIO67 SD_START SD_START

MPIO68 SZBT_C2

MPIO69 SZBT_C1

MPIO70 SZBT_D0

MPIO71 SZBT_D1

MPIO72 SZBT_D2

MPIO73 SZBT_D3

MPIO74 SZBT_A0

MPIO75 SZBT_A1

MPIO76 SZBT_A2

MPIO77 SZBT_A3

MPIO78 SZBT_START

MPIO79 FPIF_SCLK

MPIO80
FPIF_SCLK_FEEDB
K

MPIO81 FPIF_RESETN

Table 11-3. MPIO Signal Assignments/Multiplexing

I/O Line Single Mode Dual Mode
49
8549A–CAP–10/08

Since the processor must manage the flow of data to keep the PIO busy, there is a significant
overhead in processing time. Note that DMA is not possible using this architecture, therefore
the bandwidth is limited by the number of cycles the software programmer allocates for the
processor to communicate with the PIO. For example, if there is a routine running that de-
mands 100% of the processor cycles and concurrently there is serial data (e.g. SPI, USART,
USB, or TWI) to be transferred to/from the FPGA, one of these processes must wait. If the
data from the FPGA is not buffered on time, it will probably be overrun by the next byte/word.

11.5.1 PIO-FPGA Connections

To accomplish a proper data transfer to/from the FPGA, we need to transfer 32 bits of ad-
dress (or possibly less), 32 bits of data, and some control signals. For this approach, one will
need to use more that a 32 bit PIO port. At least 2 more PIO bits are necessary for control
signals.

The Figure 11-6 shows the 32+2 PIO interface to a FPGA.

Figure 11-6. PIO interface to FPGA

11.5.2 PIO-FPGA Access Routines

Based on the resources shown above, we can define a software algorithm to transfer data
from/to FPGA.

Þ write_to_fpga: Algorithm to write 32 bits of data to FPGA, this assumes that, the
direction of the bidirectional buffers in the PIO’s has been previously set.

PIO_DATA = ADDRESS; // Pass the address to write

PIO_CTRL = START | WR; // Send start of address cycle

PIO_CTRL = CLEAR; // Clear PIO ctrl, this ends the address cycle

PIO_DATA = DATA; // Set data to transfer

PIO_CTRL = START; // Data is ready in PIO

PIO_CTRL = CLEAR; // This end the data cycle

Þ read_from_fpga: Algorithm to read data from the FPGA, this assumes that, the direction
of the bidirectional buffers in the PIO’s has been previously set.

PIO_DATA = ADDRESS; // Set the address to read

PIO_CTRL = START | RD; // Send start of address cycle

PIO_CTRL = CLEAR; // Clear PIO ctrl, this ends the address cycle

ARM Microcontroller FPGA

WR / RD _

Start

Address / Data

FPGA
Logic

Ctrl
PIO 2
bits

Data
PIO 32

bits

ARM
System
50
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
PIO_DATA_DIR = INPUT; // Set PIO-Data direction as input to receive the
data

DELAY(WAIT_FOR_FPGA); // wait for the FPGA to send the data

DATA_FROM_FPGA = *PIO_DATA; // this is the end of read cycle

NOTE These algorithms are for a basic transfer, a more sophisticated algorithm is
necessary to establish a proper communication between the ARM microcontroller
and the FPGA.

11.5.3 PIO-FPGA Waveforms

Figure 11-7shows the PIO timing when writing to FPGA.

Figure 11-7. Write to FPGA

The access time is calculated as the sum of:

Taccess-Pio = t1 + address phase + t2 + data phase

Using the GCC compiler with maximum optimizations, the system takes approximately 55
AHB cycles to perform the write operation to the FPGA.

Figure 11-8 shows the PIO timing when reading from the FPGA.

Figure 11-8. Read from FPGA

AHB CLK

START

WR / RD_

DATA

t1 t2

DataAddress

Address Phase Data Phase

AHB CLK

START

WR / RD_

DATA

t1 t2

Data from FPGAAddress

Address Phase Data Phase
51
8549A–CAP–10/08

Using the GCC compiler with maximum optimization and assuming t2 (wait for FPGA re-
sponse ready) is also around 25 AHB cycles, and the system takes approximately 85 AHB
cycles for a read operation from the FPGA.

11.6 Interfacing using EBI
The External Bus Interface (EBI) module, is designed to transfer data between external de-
vices and the Memory Controllers of an ARM based device. These external Memory Con-
trollers are capable of handling several types of external memory and peripheral devices,
such as SDRAM, SRAM, NOR Flash, NAND Flash, and various PROM devices.

However, the EBI can also provide an interface to an FPGA as long as the FPGA can work
with one of the predefined memory interfaces. Due to its simplicity and familiarity, the Static
Memory Controller (SMC) which supports an SRAM-type interface is preferred for this pur-
pose. Usually the FPGA will have to include a module that understands the SMC timing and
is able to respond to the SMC as expected.

The EBI interface already provides all the necessary parallel, high-drive I/O to allow a user
to communicate with an FPGA with reasonable performance. However if the external device
is slow or introduces wait cycles, the throughput of the interface could be compromised. Also
since the EBI must be driven by the processor or another AHB master, the bandwidth that
the EBI can achieve is partly determined by the software that sets the bus and interrupt pri-
orities, etc.

11.6.1 EBI-FPGA Connections

Figure 11-9 shows the ARM Microcontroller driving the FPGA through the EBI. The selected
interface is the SMC. A special module need to be designed in the FPGA to interface the
EBI-SMC to the CAP7E microcontroller.

Figure 11-9. EBI driving the FPGA

11.6.2 EBI TIming

Figure 11-10 shows the standard read timing for the EBI using the SMC memory interface
and Figure 11-11 shows the standard write cycle.

NOTE These timing diagrams are also shown in section TBD. All parameters shown are
programmable based on the speed of the external FPGA.

ARM Microcontroller FPGA

Address

FPGA
Logic

EBI SRAM
Controller

ARM
System

Data

NBS

NCS

NRD

NWE
52
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 11-10. Read Cycle

Figure 11-11. Write Cycle

WCK

A [25:2]

NRD

NCS

NBS0, NBS1,
NBS2, NBS3,

A0, A1

D [S1:D]

NRD_SETUP NRD_PULSE NRD_HOLD

NCS_RD_SETUP NCS_RD_PULSE NCS_RD_HOLD

NRD_CYCLE

MCK

A [25:2]

NWE

NCS

NBS0, NBS1,
NBS2, NBS3,

A0, A1

NWE_SETUP NWE_PULSE NWE_HOLD

NCS_WR_SETUP NCS_WR_PULSE NCS_WR_HOLD

NWE_CYCLE
53
8549A–CAP–10/08

54
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
12. ARM7TDMI Processor Overview

12.1 Overview
The ARM7TDMI core executes both the 32-bit ARM® and 16-bit Thumb® instruction sets, allow-
ing the user to trade off between high performance and high code density.The ARM7TDMI
processor implements Von Neuman architecture, using a three-stage pipeline consisting of
Fetch, Decode, and Execute stages.

The main features of the ARM7tDMI processor are:

• ARM7TDMI Based on ARMv4T Architecture

• Two Instruction Sets

– ARM® High-performance 32-bit Instruction Set

– Thumb® High Code Density 16-bit Instruction Set

• Three-Stage Pipeline Architecture

– Instruction Fetch (F)

– Instruction Decode (D)

– Execute (E)

12.2 ARM7TDMI Processor
For further details on ARM7TDMI, refer to the following ARM documents:

ARM Architecture Reference Manual (DDI 0100E)

ARM7TDMI Technical Reference Manual (DDI 0210B)

12.2.1 Instruction Type
Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

12.2.2 Data Type
ARM7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be
aligned to four-byte boundaries and half words to two-byte boundaries.

Unaligned data access behavior depends on which instruction is used where.

12.2.3 ARM7TDMI Operating Mode
The ARM7TDMI, based on ARM architecture v4T, supports seven processor modes:

User: The normal ARM program execution state

FIQ: Designed to support high-speed data transfer or channel process

IRQ: Used for general-purpose interrupt handling

Supervisor: Protected mode for the operating system

Abort mode: Implements virtual memory and/or memory protection

System: A privileged user mode for the operating system

Undefined: Supports software emulation of hardware coprocessors

Mode changes may be made under software control, or may be brought about by external inter-
rupts or exception processing. Most application programs execute in User mode. The non-user
55
8549A–CAP–10/08

modes, or privileged modes, are entered in order to service interrupts or exceptions, or to
access protected resources.

12.2.4 ARM7TDMI Registers
The ARM7TDMI processor has a total of 37registers:

• 31 general-purpose 32-bit registers

• 6 status registers

These registers are not accessible at the same time. The processor state and operating mode
determine which registers are available to the programmer.

At any one time 16 registers are visible to the user. The remainder are synonyms used to speed
up exception processing.

Register 15 is the Program Counter (PC) and can be used in all instructions to reference data
relative to the current instruction.

R14 holds the return address after a subroutine call.

R13 is used (by software convention) as a stack pointer.

Table 12-1. ARM7TDMI ARM Modes and Registers Layout

User and
System Mode

Supervisor
Mode Abort Mode

Undefined
Mode

Interrupt
Mode

Fast Interrupt
Mode

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_FIQ

R9 R9 R9 R9 R9 R9_FIQ

R10 R10 R10 R10 R10 R10_FIQ

R11 R11 R11 R11 R11 R11_FIQ

R12 R12 R12 R12 R12 R12_FIQ

R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ

R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

Mode-specific banked registers
56
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Registers R0 to R7 are unbanked registers. This means that each of them refers to the same 32-
bit physical register in all processor modes. They are general-purpose registers, with no special
uses managed by the architecture, and can be used wherever an instruction allows a general-
purpose register to be specified.

Registers R8 to R14 are banked registers. This means that each of them depends on the current
mode of the processor.

12.2.4.1 Modes and Exception Handling
All exceptions have banked registers for R14 and R13.

After an exception, R14 holds the return address for exception processing. This address is used
to return after the exception is processed, as well as to address the instruction that caused the
exception.

R13 is banked across exception modes to provide each exception handler with a private stack
pointer.

The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin with-
out having to save these registers.

A seventh processing mode, System Mode, does not have any banked registers. It uses the
User Mode registers. System Mode runs tasks that require a privileged processor mode and
allows them to invoke all classes of exceptions.

Exception vectors are located starting at address 0x0000 0000.

12.2.4.2 Status Registers
All other processor states are held in status registers. The current operating processor status is
in the Current Program Status Register (CPSR). The CPSR holds:

• four ALU flags (Negative, Zero, Carry, and Overflow)

• two interrupt disable bits (one for each type of interrupt)

• one bit to indicate ARM or Thumb execution

• five bits to encode the current processor mode

All five exception modes also have a Saved Program Status Register (SPSR) that holds the
CPSR of the task immediately preceding the exception.

12.2.4.3 Exception Types
The ARM7TDMI supports five types of exception and a privileged processing mode for each type.
The types of exceptions are:

• fast interrupt (FIQ)

• normal interrupt (IRQ)

• memory aborts (used to implement memory protection or virtual memory)

• attempted execution of an undefined instruction

• software interrupts (SWIs)

Exceptions are generated by internal and external sources.

More than one exception can occur in the same time.

When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save state.
57
8549A–CAP–10/08

To return after handling the exception, the SPSR is moved to the CPSR, and R14 is moved to
the PC. This can be done in two ways:

• by using a data-processing instruction with the S-bit set, and the PC as the destination

• by using the Load Multiple with Restore CPSR instruction (LDM)

12.2.5 ARM Instruction Set Overview
The ARM instruction set is divided into:

• Branch instructions

• Data processing instructions

• Status register transfer instructions

• Load and Store instructions

• Coprocessor instructions

• Exception-generating instructions

ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bit[31:28]).

Table 12-2 gives the ARM instruction mnemonic list.

Table 12-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move CDP Coprocessor Data Processing

ADD Add MVN Move Not

SUB Subtract ADC Add with Carry

RSB Reverse Subtract SBC Subtract with Carry

CMP Compare RSC Reverse Subtract with Carry

TST Test CMN Compare Negated

AND Logical AND TEQ Test Equivalence

EOR Logical Exclusive OR BIC Bit Clear

MUL Multiply ORR Logical (inclusive) OR

SMULL Sign Long Multiply MLA Multiply Accumulate

SMLAL Signed Long Multiply Accumulate UMULL Unsigned Long Multiply

MSR Move to Status Register UMLAL Unsigned Long Multiply Accumulate

B Branch MRS Move From Status Register

BX Branch and Exchange BL Branch and Link

LDR Load Word SWI Software Interrupt

LDRSH Load Signed Halfword STR Store Word

LDRSB Load Signed Byte STRH Store Half Word

LDRH Load Half Word STRB Store Byte

LDRB Load Byte STRBT Store Register Byte with Translation

LDRBT Load Register Byte with Translation STRT Store Register with Translation

LDRT Load Register with Translation STM Store Multiple
58
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
12.2.6 Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

• Branch instructions

• Data processing instructions

• Load and Store instructions

• Load and Store Multiple instructions

• Exception-generating instruction

In Thumb mode, eight general-purpose registers, R0 to R7, are available that are the same
physical registers as R0 to R7 when executing ARM instructions. Some Thumb instructions also
access to the Program Counter (ARM Register 15), the Link Register (ARM Register 14) and the
Stack Pointer (ARM Register 13). Further instructions allow limited access to the ARM registers
8 to 15.

Table 12-3 gives the Thumb instruction mnemonic list.

LDM Load Multiple SWPB Swap Byte

SWP Swap Word MRC Move From Coprocessor

MCR Move To Coprocessor STC Store From Coprocessor

LDC Load To Coprocessor

Table 12-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

Table 12-3. Thumb Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move MVN Move Not

ADD Add ADC Add with Carry

SUB Subtract SBC Subtract with Carry

CMP Compare CMN Compare Negated

TST Test NEG Negate

AND Logical AND BIC Bit Clear

EOR Logical Exclusive OR ORR Logical (inclusive) OR

LSL Logical Shift Left LSR Logical Shift Right

ASR Arithmetic Shift Right ROR Rotate Right

MUL Multiply

B Branch BL Branch and Link

BX Branch and Exchange SWI Software Interrupt

LDR Load Word STR Store Word

LDRH Load Half Word STRH Store Half Word

LDRB Load Byte STRB Store Byte
59
8549A–CAP–10/08

LDRSH Load Signed Halfword LDRSB Load Signed Byte

LDMIA Load Multiple STMIA Store Multiple

PUSH Push Register to stack POP Pop Register from stack

Table 12-3. Thumb Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation
60
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
13. CAP7E Debug and Test

13.1 Overview
The AT91CAP7E features a number of complementary debug and test capabilities. A common
JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions, such as down-
loading code and single-stepping through programs. The Debug Unit provides a two-pin UART
that can be used to upload an application into internal SRAM. It manages the interrupt handling
of the internal COMMTX and COMMRX signals that trace the activity of the Debug Communica-
tion Channel.

A set of dedicated debug and test input/output pins gives direct access to these capabilities from
a PC-based test environment.

13.2 Block Diagram

Figure 13-1. Debug and Test Block Diagram

DBGU

P
IO

DRXD

DTXD

TMS

TCK

TDI

JTAGSEL

TDO

TST

Reset
and
Test

TAP: Test Access Port

Boundary
Port

ICE/JTAG
TAP

POR

RTCK

NTRST

ICEARM7TDMI
61
8549A–CAP–10/08

13.3 Application Examples

13.3.1 Debug Environment
Figure 13-2 on page 62 shows a complete debug environment example. The ICE/JTAG inter-
face is used for standard debugging functions, such as downloading code and single-stepping
through the program. A software debugger running on a personal computer provides the user
interface for ICE/JTAG interface.

Figure 13-2. Application Debug and Trace Environment Example

CAP7-based Application Board

ICE/JTAG
Interface

Host Debugger

ICE/JTAG
Connector

CAP7 Terminal
RS232

Connector
62
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
13.3.2 Test Environment
Figure 13-3 on page 63 shows a test environment example. Test vectors are sent and inter-
preted by the tester. In this example, the “board in test” is designed using a number of JTAG-
compliant devices. These devices can be connected to form a single scan chain.

Figure 13-3. Application Test Environment Example

13.4 Debug and Test Pin Description

JTAG
Interface

ICE/JTAG
Connector

CAP7-based Application Board In Test

CAP7

Test Adaptor

Chip 2Chip n

Chip 1

Tester

Table 13-1. Debug and Test Pin List

Pin Name Function Type Active Level

Reset/Test

NRST Microcontroller Reset Input/Output Low

TST Test Mode Select Input High

ICE and JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

NTRST Test Reset Signal Input Low

JTAGSEL JTAG Selection Input

Debug Unit

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output
63
8549A–CAP–10/08

13.5 Functional Description

13.5.1 Test Pin
One dedicated pin, TST, is used to define the device operating mode. The user must make sure
that this pin is tied at low level to ensure normal operating conditions. Other values associated
with this pin are reserved for manufacturing test.

13.5.2 Embedded In-circuit Emulator
The ARM7TDMI Embedded ICE is supported via the ICE/JTAG port. The internal state of the
ARM7TDMI is examined through an ICE/JTAG port.

The ARM7TDMI processor contains hardware extensions for advanced debugging features: • In
halt mode, a store-multiple (STM) can be inserted into the instruction pipeline. This exports the
contents of the ARM7TDMI registers. This data can be serially shifted out without affecting the
rest of the system. • In monitor mode, the JTAG interface is used to transfer data between the
debugger and a simple monitor program running on the ARM7TDMI processor.

There are three scan chains inside the ARM7TDMI processor which support testing, debugging,
and programming of the Embedded ICE. The scan chains are controlled by the ICE/JTAG port.

Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly
between ICE and JTAG operations. A chip reset must be performed after JTAGSEL is changed.

For further details on the Embedded In-Circuit-Emulator, see the ARM document: ARM7TDMI
(Rev 4) Technical Reference Manual (DDI0210B).

13.5.3 Debug Unit
The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several
debug and trace purposes and offers an ideal means for in-situ programming solutions and
debug monitor communication. Moreover, the association with two Peripheral DMA Controller
channels permits packet handling of these tasks with processor time reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals
that come from the ICE and that trace the activity of the Debug Communication Channel.The
Debug Unit allows blockage of access to the system through the ICE interface.

A specific register, the Debug Unit Chip ID Register (DBGU_CIDR), gives information about the
product’s internal configuration and its version.

The AT91CAP7E Debug Unit Chip ID value is 0x8377 09xx on 32-bit width (1000 0011 0111
0111 0000 1001 010x xxxx). The last five bits of the register are reserved for a version number.

For further details on the Debug Unit, see the Debug Unit section.

13.5.4 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST
and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds
with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1
JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must be per-
formed after JTAGSEL is changed.
64
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.

13.5.4.1 JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains bits that correspond to active pins and associated
control signals.

Each AT91CAP7E input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit
contains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad. Each customer’s
AT91CAP7E product may have its own unique BSR. For a full description of this BSR, see the
appropriate product-specifc BSDL file.

13.5.5 ID Code Register
Access: Read-only

• VERSION [31:28]: Product Version Number
Set to 0x0.

• PART NUMBER [27:12]: Product Part Number
Personalization dependent

• MANUFACTURER IDENTITY [11:1]
Set to 0x01F.

• Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.

JTAG ID Code value is unique for each CAP7 personalization.

31 30 29 28 27 26 25 24

VERSION PART NUMBER

23 22 21 20 19 18 17 16

PART NUMBER

15 14 13 12 11 10 9 8

PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0

MANUFACTURER IDENTITY 1
65
8549A–CAP–10/08

66
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
14. Reset Controller (RSTC)

14.1 Description
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

14.2 Block Diagram

Figure 14-1. Reset Controller Block Diagram

14.3 Functional Description

14.3.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager, a Startup Counter and a Reset State
Manager. It runs at Slow Clock and generates the following reset signals:

• proc_nreset: Processor reset line. It also resets the Watchdog Timer.

• backup_nreset: Affects all the peripherals powered by VDDBU.

• periph_nreset: Affects the whole set of embedded peripherals.

• nrst_out: Drives the NRST pin.

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

NRST

Startup
Counter

proc_nreset

wd_fault

periph_nreset

backup_neset

SLCK

Reset
State

Manager

Reset Controller

rstc_irq

NRST
Manager

exter_nreset
nrst_out

Main Supply
POR

WDRPROC

user_reset

Backup Supply
POR
67
8549A–CAP–10/08

The startup counter waits for the complete crystal oscillator startup. The wait delay is given by
the crystal oscillator startup time maximum value that can be found in the section Crystal Oscil-
lator Characteristics in the Electrical Characteristics section of the product documentation.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDBU, so that its configuration is saved as long as VDDBU is on.

14.3.2 NRST Manager
The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 14-2 shows the block diagram of the NRST Manager.

Figure 14-2. NRST Manager

14.3.2.1 NRST Signal or Interrupt
The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

14.3.2.2 NRST External Reset Control
The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) Slow Clock cycles. This gives the approximate duration of an assertion between 60 μs
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

External Reset Timer

URSTS

URSTEN

ERSTL

exter_nreset

URSTIEN

RSTC_MR

RSTC_MR

RSTC_MR

RSTC_SR

NRSTL

nrst_out

NRST

rstc_irq
Other

interrupt
sources

user_reset
68
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
As the field is within RSTC_MR, which is backed-up, this field can be used to shape the system
power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

14.3.3 Reset States
The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

14.3.3.1 General Reset
A general reset occurs when VDDBU is powered on. The backup supply POR cell output rises
and is filtered with a Startup Counter, which operates at Slow Clock. The purpose of this counter
is to make sure the Slow Clock oscillator is stable before starting up the device. The length of
startup time is hardcoded to comply with the RC Oscillator startup time of 8 slow clock cycles.

After this time, the processor clock is released at Slow Clock and all the other signals remains
valid for 2 cycles for proper processor and logic reset. Then, all the reset signals are released
and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR is reset, the
NRST line rises 2 cycles after the backup_nreset, as ERSTL defaults at value 0x0.

When VDDBU is detected low by the Backup Supply POR Cell, all resets signals are immedi-
ately asserted, even if the Main Supply POR Cell does not report a Main Supply shut down.

Figure 14-3 shows how the General Reset affects the reset signals.

Figure 14-3. General Reset State

SLCK

periph_nreset

proc_nreset

Backup Supply
POR output

NRST
(nrst_out)

EXTERNAL RESET LENGTH
= 2 cycles

Startup Time

MCK

Processor Startup
= 3 cycles

backup_nreset

Any
Freq.

RSTTYP XXX 0x0 = General Reset XXX
69
8549A–CAP–10/08

14.3.3.2 Wake-up Reset
The Wake-up Reset occurs when the Main Supply is down. When the Main Supply POR output
is active, all the reset signals are asserted except backup_nreset. When the Main Supply pow-
ers up, the POR output is resynchronized on Slow Clock. The processor clock is then re-enabled
during 2 Slow Clock cycles, depending on the requirements of the ARM processor.

At the end of this delay, the processor and other reset signals rise. The field RSTTYP in
RSTC_SR is updated to report a Wake-up Reset.

The “nrst_out” remains asserted for EXTERNAL_RESET_LENGTH cycles. As RSTC_MR is
backed-up, the programmed number of cycles is applicable.

When the Main Supply is detected falling, the reset signals are immediately asserted. This tran-
sition is synchronous with the output of the Main Supply POR.

Figure 14-4. Wake-up State

14.3.3.3 User Reset
The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a three-
cycle processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

SLCK

periph_nreset

proc_nreset

Main Supply
POR output

NRST
(nrst_out)

EXTERNAL RESET LENGTH
= 4 cycles (ERSTL = 1)

MCK

Processor Startup
= 3 cycles

backup_nreset

Any
Freq.

Resynch.
2 cycles

RSTTYP XXX 0x1 = WakeUp Reset XXX
70
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
The NRST Manager guaran tees tha t the NRST l i ne i s asse r ted fo r
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

Figure 14-5. User Reset State

14.3.3.4 Software Reset
The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at
1:

• PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

• PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

• EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-
mands can be performed independently or simultaneously. The software reset lasts 2 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

SLCK

periph_nreset

proc_nreset

NRST

NRST
(nrst_out)

>= EXTERNAL RESET LENGTH

MCK

Processor Startup
= 3 cycles

Any
Freq.

Resynch.
2 cycles

RSTTYP Any XXX

Resynch.
2 cycles

0x4 = User Reset
71
8549A–CAP–10/08

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.
No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

Figure 14-6. Software Reset

14.3.3.5 Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 2 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

• If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

• If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

SLCK

periph_nreset
if PERRST=1

proc_nreset
if PROCRST=1

Write RSTC_CR

NRST
(nrst_out)

if EXTRST=1
EXTERNAL RESET LENGTH

8 cycles (ERSTL=2)

MCK

Processor Startup
= 3 cycles

Any
Freq.

RSTTYP Any XXX 0x3 = Software Reset

Resynch.
1 cycle

SRCMP in RSTC_SR
72
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 14-7. Watchdog Reset

14.3.4 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,
given in descending order:

• Backup Reset

• Wake-up Reset

• Watchdog Reset

• Software Reset

• User Reset

Particular cases are listed below:

• When in User Reset:

– A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

– A software reset is impossible, since the processor reset is being activated.

• When in Software Reset:

– A watchdog event has priority over the current state.

– The NRST has no effect.

• When in Watchdog Reset:

– The processor reset is active and so a Software Reset cannot be programmed.

– A User Reset cannot be entered.

14.3.5 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

Only if
WDRPROC = 0

SLCK

periph_nreset

proc_nreset

wd_fault

NRST
(nrst_out)

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

MCK

Processor Startup
= 3 cycles

Any
Freq.

RSTTYP Any XXX 0x2 = Watchdog Reset
73
8549A–CAP–10/08

• RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

• SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

• NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

• URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
14-8). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 14-8. Reset Controller Status and Interrupt

14.4 Reset Controller (RSTC) User Interface

Note: 1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply.

MCK

NRST

NRSTL

2 cycle
resynchronization

2 cycle
resynchronization

URSTS

read
RSTC_SRPeripheral Access

rstc_irq
if (URSTEN = 0) and

(URSTIEN = 1)

Table 14-1. Reset Controller (RSTC) Register Mapping

Offset Register Name Access Reset Value
Back-up Reset

Value

0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0001 0x0000_0000

0x08 Mode Register RSTC_MR Read/Write - 0x0000_0000
74
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
14.4.1 Reset Controller Control Register
Register Name: RSTC_CR

Access Type: Write-only

• PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.

• PERRST: Peripheral Reset
0 = No effect.

1 = If KEY is correct, resets the peripherals.

• EXTRST: External Reset
0 = No effect.

1 = If KEY is correct, asserts the NRST pin.

• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

14.4.2 Reset Controller Status Register
Register Name: RSTC_SR

Access Type: Read-only

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – –

7 6 5 4 3 2 1 0

– – – – EXTRST PERRST – PROCRST

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – SRCMP NRSTL

15 14 13 12 11 10 9 8
– – – – – RSTTYP

7 6 5 4 3 2 1 0

– – – – – – URSTS
75
8549A–CAP–10/08

• URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

• RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

• NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

• SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

14.4.3 Reset Controller Mode Register
Register Name: RSTC_MR

Access Type: Read/Write

• URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.

1 = The detection of a low level on the pin NRST triggers a User Reset.

• URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.

1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

• ERSTL: External Reset Length

RSTTYP Reset Type Comments

0 0 0 General Reset Both VDDCORE and VDDBU rising

0 0 1 Wake Up Reset VDDCORE rising

0 1 0 Watchdog Reset Watchdog fault occurred

0 1 1 Software Reset Processor reset required by the software

1 0 0 User Reset NRST pin detected low

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – –

15 14 13 12 11 10 9 8

– – – – ERSTL

7 6 5 4 3 2 1 0

– – URSTIEN – – – URSTEN
76
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) Slow Clock cycles. This
allows assertion duration to be programmed between 60 μs and 2 seconds.

• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
77
8549A–CAP–10/08

78
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
15. Real-time Timer (RTT)

15.1 Description
The Real-time Timer is built around a 32-bit counter and used to count elapsed seconds. It gen-
erates a periodic interrupt and/or triggers an alarm on a programmed value.

15.2 Block Diagram

Figure 15-1. Real-time Timer

15.3 Functional Description
The Real-time Timer is used to count elapsed seconds. It is built around a 32-bit counter fed by
Slow Clock divided by a programmable 16-bit value. The value can be programmed in the field
RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 Hz). The 32-bit counter can count up to 232 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

SLCK

RTPRES

RTTINC

ALMS

16-bit
Divider

32-bit
Counter

ALMV

=

CRTV

RTT_MR

RTT_VR

RTT_AR

RTT_SR

RTTINCIEN

RTT_MR

0

1 0

ALMIEN

rtt_int

RTT_MR

set

set

RTT_SR

read
RTT_SR

reset

reset

RTT_MR

reload

rtt_alarm

RTTRST

RTT_MR

RTTRST
79
8549A–CAP–10/08

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to 0xFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).

Figure 15-2. RTT Counting

Prescaler

ALMVALMV-10 ALMV+1

0

RTPRES - 1

RTT

APB cycle

read RTT_SR

ALMS (RTT_SR)

APB Interface

MCK

RTTINC (RTT_SR)

ALMV+2 ALMV+3...

APB cycle
80
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
15.4 Real-time Timer User Interface

15.4.1 Register Mapping

Table 15-1. Real-time Timer Register Mapping

Offset Register Name Access Reset Value

0x00 Mode Register RTT_MR Read/Write 0x0000_8000

0x04 Alarm Register RTT_AR Read/Write 0xFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000
81
8549A–CAP–10/08

15.4.2 Real-time Timer Mode Register
Register Name: RTT_MR

Access Type: Read/Write

• RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 216

RTPRES … 0: The prescaler period is equal to RTPRES.

• ALMIEN: Alarm Interrupt Enable
0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 = The bit ALMS in RTT_SR asserts interrupt.

• RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 = The bit RTTINC in RTT_SR has no effect on interrupt.

1 = The bit RTTINC in RTT_SR asserts interrupt.

• RTTRST: Real-time Timer Restart
1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – RTTRST RTTINCIEN ALMIEN

15 14 13 12 11 10 9 8

RTPRES

7 6 5 4 3 2 1 0

RTPRES
82
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
15.4.3 Real-time Timer Alarm Register
Register Name: RTT_AR

Access Type: Read/Write

• ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

15.4.4 Real-time Timer Value Register
Register Name: RTT_VR

Access Type: Read-only

• CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

31 30 29 28 27 26 25 24
ALMV

23 22 21 20 19 18 17 16

ALMV

15 14 13 12 11 10 9 8

ALMV

7 6 5 4 3 2 1 0

ALMV

31 30 29 28 27 26 25 24

CRTV

23 22 21 20 19 18 17 16

CRTV

15 14 13 12 11 10 9 8

CRTV

7 6 5 4 3 2 1 0

CRTV
83
8549A–CAP–10/08

15.4.5 Real-time Timer Status Register
Register Name: RTT_SR

Access Type: Read-only

• ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occured since the last read of RTT_SR.

1 = The Real-time Alarm occured since the last read of RTT_SR.

• RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – RTTINC ALMS
84
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
16. Periodic Interval Timer (PIT)

16.1 Description
The Periodic Interval Timer (PIT) provides the operating system’s scheduler interrupt. It is
designed to offer maximum accuracy and efficient management, even for systems with long
response time.

16.2 Block Diagram

Figure 16-1. Periodic Interval Timer

16.3 Functional Description
The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems.

The PIT provides a programmable overflow counter and a reset-on-read feature. It is built
around two counters: a 20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at
Master Clock /16.

The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the
field PIV of the Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to
0 and increments the Periodic Interval Counter, PICNT. The status bit PITS in the Status Regis-
ter (PIT_SR) rises and triggers an interrupt, provided the interrupt is enabled (PITIEN in
PIT_MR).

Writing a new PIV value in PIT_MR does not reset/restart the counters.

20-bit
Counter

MCK/16

PIV

PIT_MR

CPIV PIT_PIVR PICNT

12-bit
Adder

0

0

read PIT_PIVR

CPIV PICNTPIT_PIIR

PITSPIT_SR

set

reset

PITIEN

PIT_MR

pit_irq

10

10

MCK

Prescaler

= ?
85
8549A–CAP–10/08

When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register
(PIT_PIVR), the overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging
the interrupt. The value of PICNT gives the number of periodic intervals elapsed since the last
read of PIT_PIVR.

When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register
(PIT_PIIR), there is no effect on the counters CPIV and PICNT, nor on the bit PITS. For exam-
ple, a profiler can read PIT_PIIR without clearing any pending interrupt, whereas a timer
interrupt clears the interrupt by reading PIT_PIVR.

The PIT may be enabled/disabled using the PITEN bit in the PIT_MR register (disabled on
reset). The PITEN bit only becomes effective when the CPIV value is 0. Figure 16-2 illustrates
the PIT counting. After the PIT Enable bit is reset (PITEN= 0), the CPIV goes on counting until
the PIV value is reached, and is then reset. PIT restarts counting, only if the PITEN is set again.

The PIT is stopped when the core enters debug state.

Figure 16-2. Enabling/Disabling PIT with PITEN

MCK Prescaler

PIVPIV - 10

PITEN

1 0

0

15

CPIV 1

restarts MCK Prescaler

0 1

APB cycle

read PIT_PIVR

0PICNT

PITS (PIT_SR)

MCK

APB Interface

APB cycle
86
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
16.4 Periodic Interval Timer (PIT) User Interface

16.4.1 Periodic Interval Timer Mode Register
Register Name: PIT_MR

Access Type: Read/Write

• PIV: Periodic Interval Value
Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to
(PIV + 1).

• PITEN: Period Interval Timer Enabled
0 = The Periodic Interval Timer is disabled when the PIV value is reached.

1 = The Periodic Interval Timer is enabled.

• PITIEN: Periodic Interval Timer Interrupt Enable
0 = The bit PITS in PIT_SR has no effect on interrupt.

1 = The bit PITS in PIT_SR asserts interrupt.

Table 16-1. Periodic Interval Timer (PIT) Register Mapping

Offset Register Name Access Reset Value

0x00 Mode Register PIT_MR Read/Write 0x000F_FFFF

0x04 Status Register PIT_SR Read-only 0x0000_0000

0x08 Periodic Interval Value Register PIT_PIVR Read-only 0x0000_0000

0x0C Periodic Interval Image Register PIT_PIIR Read-only 0x0000_0000

31 30 29 28 27 26 25 24
– – – – – – PITIEN PITEN

23 22 21 20 19 18 17 16
– – – – PIV

15 14 13 12 11 10 9 8
PIV

7 6 5 4 3 2 1 0
PIV
87
8549A–CAP–10/08

16.4.2 Periodic Interval Timer Status Register
Register Name: PIT_SR

Access Type: Read-only

• PITS: Periodic Interval Timer Status
0 = The Periodic Interval timer has not reached PIV since the last read of PIT_PIVR.

1 = The Periodic Interval timer has reached PIV since the last read of PIT_PIVR.

16.4.3 Periodic Interval Timer Value Register
Register Name: PIT_PIVR

Access Type: Read-only

Reading this register clears PITS in PIT_SR.

• CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.

• PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – PITS

31 30 29 28 27 26 25 24
PICNT

23 22 21 20 19 18 17 16
PICNT CPIV

15 14 13 12 11 10 9 8
CPIV

7 6 5 4 3 2 1 0
CPIV
88
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
16.4.4 Periodic Interval Timer Image Register
Register Name: PIT_PIIR

Access Type: Read-only

• CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.

• PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

31 30 29 28 27 26 25 24
PICNT

23 22 21 20 19 18 17 16

PICNT CPIV

15 14 13 12 11 10 9 8

CPIV

7 6 5 4 3 2 1 0

CPIV
89
8549A–CAP–10/08

90
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
17. Watchdog Timer (WDT)

17.1 Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

17.2 Block Diagram

Figure 17-1. Watchdog Timer Block Diagram

17.3 Functional Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

= 0

1 0

set

resetread WDT_SR
or
reset

wdt_fault
(to Reset Controller)

set

reset

WDFIEN

wdt_int

WDT_MR

SLCK1/128

12-bit Down
Counter

Current
Value

WDD

WDT_MR

<= WDD

WDV

WDRSTT

WDT_MR

WDT_CR

reload

WDUNF

WDERR

reload

write WDT_MR

WDT_MR

WDRSTEN
91
8549A–CAP–10/08

After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.
92
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 17-2. Watchdog Behavior

17.4 User Interface

17.4.1 Register Mapping

17.4.2 Watchdog Timer Control Register
Register Name: WDT_CR

Access Type: Write-only

• WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the Watchdog.

Table 17-1. Watchdog Timer Registers

Offset Register Name Access Reset Value

0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read/Write Once 0x3FFF_2FFF

0x08 Status Register WDT_SR Read-only 0x0000_0000

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – WDRSTT

0

WDV

WDD

WDT_CR = WDRSTT
Watchdog

Fault

Normal behavior

Watchdog Error Watchdog Underflow

FFF
if WDRSTEN is 1

if WDRSTEN is 0

Forbidden
Window

Permitted
Window
93
8549A–CAP–10/08

• KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

17.4.3 Watchdog Timer Mode Register
Register Name: WDT_MR

Access Type: Read/Write Once

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit Watchdog Counter.

• WDFIEN: Watchdog Fault Interrupt Enable

0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

• WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.

If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

• WDDBGHLT: Watchdog Debug Halt

0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt

0: The Watchdog runs when the system is in idle mode.

1: The Watchdog stops when the system is in idle state.

• WDDIS: Watchdog Disable

31 30 29 28 27 26 25 24

WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16

WDD

15 14 13 12 11 10 9 8

WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0

WDV
94
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

17.4.4 Watchdog Timer Status Register
Register Name: WDT_SR

Access Type: Read-only

• WDUNF: Watchdog Underflow

0: No Watchdog underflow occurred since the last read of WDT_SR.

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

• WDERR: Watchdog Error

0: No Watchdog error occurred since the last read of WDT_SR.

1: At least one Watchdog error occurred since the last read of WDT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – WDERR WDUNF
95
8549A–CAP–10/08

96
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
18. Shutdown Controller (SHDWC)

18.1 Description
The Shutdown Controller controls the power supplies VDDIO and VDDCORE and the wake-up
detection on debounced input lines.

18.2 Block Diagram

Figure 18-1. Shutdown Controller Block Diagram

18.3 I/O Lines Description

18.4 Product Dependencies

18.4.1 Power Management
The Shutdown Controller is continuously clocked by Slow Clock. The Power Management Con-
troller has no effect on the behavior of the Shutdown Controller.

18.5 Functional Description
The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU
and manages wake-up input pins and one output pin, SHDN.

Shutdown

Wake-up

Shutdown
Output

Controller

SHDN

WKUP0

SHDW

WKMODE0

Shutdown Controller

RTT Alarm

RTTWKEN

SHDW_MR

SHDW_MR

SHDW_CR

CPTWK0

WAKEUP0

RTTWK SHDW_SR

SHDW_SR

set

set

reset

reset

read SHDW_SR

read SYSC_SHSR

SLCK

Table 18-1. I/O Lines Description

Name Description Type

WKUP0 Wake-up 0 input Input

SHDN Shutdown output Output
97
8549A–CAP–10/08

A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter pro-
viding the main power supplies of the system, and especially VDDCORE and/or VDDIO. The
wake-up inputs (WKUP0) connect to any push-buttons or signal that wake up the system.

The software is able to control the pin SHDN by writing the Shutdown Control Register
(SHDW_CR) with the bit SHDW at 1. The shutdown is taken into account only 2 slow clock
cycles after the write of SHDW_CR. This register is password-protected and so the value written
should contain the correct key for the command to be taken into account. As a result, the system
should be powered down.

A level change on WKUP0 is used as wake-up. Wake-up is configured in the Shutdown Mode
Register (SHDW_MR). The transition detector can be programmed to detect either a positive or
negative transition or any level change on WKUP0. The detection can also be disabled. Pro-
gramming is performed by defining WKMODE0.

Moreover, a debouncing circuit can be programmed for WKUP0. The debouncing circuit filters
pulses on WKUP0 shorter than the programmed number of 16 SLCK cycles in CPTWK0 of the
SHDW_MR register. If the programmed level change is detected on a pin, a counter starts.
When the counter reaches the value programmed in the corresponding field, CPTWK0, the
SHDN pin is released. If a new input change is detected before the counter reaches the corre-
sponding value, the counter is stopped and cleared. WAKEUP0 of the Status Register
(SHDW_SR) reports the detection of the programmed events on WKUP0 with a reset after the
read of SHDW_SR.

The Shutdown Controller can be programmed so as to activate the wake-up using the RTT
alarm (the detection of the rising edge of the RTT alarm is synchronized with SLCK). This is
done by writing the SHDW_MR register using the RTTWKEN fields. When enabled, the detec-
tion of the RTT alarm is reported in the RTTWK bit of the SHDW_SR Status register. It is reset
after the read of SHDW_SR. When using the RTT alarm to wake up the system, the user must
ensure that the RTT alarm status flag is cleared before shutting down the system. Otherwise, no
rising edge of the status flag may be detected and the wake-up fails.

18.6 Shutdown Controller (SHDWC) User Interface

18.6.1 Register Mapping

Table 18-2. Shutdown Controller (SHDWC) Registers

Offset Register Name Access Reset Value

0x00 Shutdown Control Register SHDW_CR Write-only -

0x04 Shutdown Mode Register SHDW_MR Read-Write 0x0000_0303

0x08 Shutdown Status Register SHDW_SR Read-only 0x0000_0000
98
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
18.6.2 Shutdown Control Register
Register Name: SHDW_CR

Access Type: Write-only

• SHDW: Shutdown Command
0 = No effect.

1 = If KEY is correct, asserts the SHDN pin.

• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SHDW
99
8549A–CAP–10/08

18.6.3 Shutdown Mode Register
Register Name: SHDW_MR

Access Type: Read/Write

• WKMODE0: Wake-up Mode 0

• CPTWK0: Counter on Wake-up 0
Defines the number of 16 Slow Clock cycles, the level detection on the corresponding input pin shall last before the wake-
up event occurs. Because of the internal synchronization of WKUP0, the SHDN pin is released
(CPTWK x 16 + 1) Slow Clock cycles after the event on WKUP.

• RTTWKEN: Real-time Timer Wake-up Enable
0 = The RTT Alarm signal has no effect on the Shutdown Controller.

1 = The RTT Alarm signal forces the de-assertion of the SHDN pin.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – RTTWKEN

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CPTWK0 – – WKMODE0

Table 1.

WKMODE[1:0] Wake-up Input Transition Selection

0 0 None. No detection is performed on the wake-up input

0 1 Low to high level

1 0 High to low level

1 1 Both levels change
100
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
18.6.4 Shutdown Status Register
Register Name: SHDW_SR

Access Type: Read-only

• WAKEUP0: Wake-up 0 Status
0 = No wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.

1 = At least one wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.

• RTTWK: Real-time Timer Wake-up
0 = No wake-up alarm from the RTT occurred since the last read of SHDW_SR.

1 = At least one wake-up alarm from the RTT occurred since the last read of SHDW_SR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – RTTWK

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – WAKEUP0
101
8549A–CAP–10/08

102
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
19. Bus Matrix

19.1 Description
The Bus Matrix implements a multi-layer AHB, based on the AHB-Lite protocol, that enables par-
allel access paths between multiple AHB masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 4 AHB Masters to up to 8 AHB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix user inter-
face is compliant with ARM® Advance Peripheral Bus and provides 6 Special Function Registers
(MATRIX_SFR) that allow the Bus Matrix to support application specific features.

19.2 Memory Mapping
The Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each
AHB Master several memory mappings. In fact, depending on the product, each memory area
may be assigned to several slaves. Booting at the same address while using different AHB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that
performs remap action for every master independently.

19.3 Special Bus Granting Mechanism
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

19.3.1 No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

19.3.2 Last Access Master
At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

19.3.3 Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.
103
8549A–CAP–10/08

19.4 Arbitration
The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per AHB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)

2. Fixed Priority Arbitration

This choice is made via the field ARBT of the Slave Configuration Registers (MATRIX_SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. See Section 19.5 ”Arbitration
Rules” on page 104.

19.5 Arbitration Rules
Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See “Undefined Length Burst Arbitration” on
page 104.

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. See “Slot Cycle Limit Arbi-
tration” on page 105.

19.5.1 Undefined Length Burst Arbitration
In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.

3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).
104
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
19.5.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.

19.5.3 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

• Round-Robin arbitration without default master

• Round-Robin arbitration with last default master

• Round-Robin arbitration with fixed default master

19.5.3.1 Round-Robin Arbitration without Default Master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

19.5.3.2 Round-Robin Arbitration with Last Default Master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

19.5.3.3 Round-Robin Arbitration with Fixed Default Master
This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

19.5.4 Fixed Priority Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).
105
8549A–CAP–10/08

19.6 AHB Generic Bus Matrix User Interface
Table 19-1. Register Mapping

Offset Register Name Access Reset Value

0x0000 Master Configuration Register 0 MATRIX_MCFG0 Read/Write 0x00000002

0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read/Write 0x00000002

0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Write 0x00000002

0x000C Master Configuration Register 3 MATRIX_MCFG3 Read/Write 0x00000002

0x0010 - 0x0014 Unused Master Configuration Registers - - -

0x0018 - 0x003C Reserved - - -

0x0040 Slave Configuration Register 0 MATRIX_SCFG0 Read/Write 0x00000010

0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x00000010

0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x00000010

0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x00000010

0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read/Write 0x00000010

0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read/Write 0x00000010

0x0058 Slave Configuration Register 6 MATRIX_SCFG6 Read/Write 0x00000010

0x005C Unused - Slave Configuration Register 7 - - -

0x0060 Slave Configuration Register 8 MATRIX_SCFG8 Read/Write 0x00000010

0x0064 Slave Configuration Register 9 MATRIX_SCFG9 Read/Write 0x00000010

0x0068 - 0x007C Reserved - - -

0x0080 Priority Register A for Slave 0 MATRIX_PRAS0 Read/Write 0x00000000

0x0084 Priority Register B for Slave 0 MATRIX_PRBS0 Read/Write 0x00000000

0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read/Write 0x00000000

0x008C Priority Register B for Slave 1 MATRIX_PRBS1 Read/Write 0x00000000

0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read/Write 0x00000000

0x0094 Priority Register B for Slave 2 MATRIX_PRBS2 Read/Write 0x00000000

0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read/Write 0x00000000

0x009C Priority Register B for Slave 3 MATRIX_PRBS3 Read/Write 0x00000000

0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read/Write 0x00000000

0x00A4 Priority Register B for Slave 4 MATRIX_PRBS4 Read/Write 0x00000000

0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Read/Write 0x00000000

0x00AC Priority Register B for Slave 5 MATRIX_PRBS5 Read/Write 0x00000000

0x00B0 Priority Register A for Slave 6 MATRIX_PRAS6 Read/Write 0x00000000

0x00B4 Priority Register B for Slave 6 MATRIX_PRBS6 Read/Write 0x00000000

0x00B8 Unused - Priority Register A for Slave 7 - - -

0x00BC Unused - Priority Register B for Slave 7 - - -

0x00C0 Priority Register A for Slave 8 MATRIX_PRAS8 Read/Write 0x00000000

0x00C4 Priority Register B for Slave 8 MATRIX_PRBS8 Read/Write 0x00000000
106
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
0x00C8 Priority Register A for Slave 9 MATRIX_PRAS9 Read/Write 0x00000000

0x00CC Priority Register B for Slave 9 MATRIX_PRBS9 Read/Write 0x00000000

0x00D0 -0x00FC Reserved - - -

0x0100 Master Remap Control Register MATRIX_MRCR Read/Write 0x00000000

0x0104 - 0x012C Reserved – – –

0x0130 EBI Chip Select Assignment Register MATRIX_EBICSA Read/Write 0x00000000

0x0134 USB Pull-up Control Register MATRIX_USBPCR Read/Write 0x00000000

0x0138 - 0x01F8 Reserved – – –

Offset Register Name Access Reset Value
107
8549A–CAP–10/08

19.6.1 Bus Matrix Master Configuration Registers
Register Name: MATRIX_MCFG0...MATRIX_MCFG3

Access Type: Read/Write

• ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.

1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.

4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – ULBT
108
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
19.6.2 Bus Matrix Slave Configuration Registers
Register Name: MATRIX_SCFG0...MATRIX_SCFG9 (MATRIX_SCFG7 unused)

Access Type: Read/Write

• SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-
forming any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

• DEFMSTR_TYPE: Default Master Type
0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.

• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

• ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration

2: Reserved

3: Reserved

31 30 29 28 27 26 25 24

– – – – – – ARBT

23 22 21 20 19 18 17 16

– – FIXED_DEFMSTR DEFMSTR_TYPE

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SLOT_CYCLE
109
8549A–CAP–10/08

19.6.3 Bus Matrix Priority Registers A For Slaves
Register Name: MATRIX_PRAS0...MATRIX_PRAS8 (MATRIX_PRAS7 unused)

Access Type: Read/Write

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

19.6.4 Bus Matrix Priority Registers B For Slaves
Register Name: MATRIX_PRBS0...MATRIX_PRBS8 (MATRIX_PRBS7 unused)

Access Type: Read/Write

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

31 30 29 28 27 26 25 24

– – M7PR – – M6PR

23 22 21 20 19 18 17 16

– – M5PR – – M4PR

15 14 13 12 11 10 9 8

– – M3PR – – M2PR

7 6 5 4 3 2 1 0

– – M1PR – – M0PR

31 30 29 28 27 26 25 24

– – M15PR – – M14PR

23 22 21 20 19 18 17 16

– – M13PR – – M12PR

15 14 13 12 11 10 9 8

– – M11PR – – M10PR

7 6 5 4 3 2 1 0

– – M9PR – – M8PR
110
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
19.6.5 Bus Matrix Master Remap Control Register
Register Name: MATRIX_MRCR

Access Type: Read/Write

Reset: 0x0000_0000

• RCB: Remap Command Bit for Master x
0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

–5 – – – – – – –

7 6 5 4 3 2 1 0

– – RCB5 RCB4 RCB3 RCB2 RCB1 RCB0
111
8549A–CAP–10/08

19.6.6 EBI Chip Select Assignment Register
Register Name: MATRIX_EBICSA

Access Type: Read/Write

Reset: 0x0000_0000

• EBI_CS1A: EBI Chip Select 1 Assignment
0 = EBI Chip Select 1 is assigned to the Static Memory Controller.

1 = EBI Chip Select 1 is assigned to the SDRAM Controller.

• EBI_CS3A: EBI Chip Select 3 Assignment
0 = EBI Chip Select 3 is only assigned to the Static Memory Controller and EBI_NCS3 behaves as defined by the SMC.

1 = EBI Chip Select 3 is assigned to the Static Memory Controller and the SmartMedia Logic is activated.

• EBI_CS4A: EBI Chip Select 4 Assignment
0 = EBI Chip Select 4 is only assigned to the Static Memory Controller and EBI_NCS4 behaves as defined by the SMC.

1 = EBI Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic (first slot) is activated.

• EBI_CS5A: EBI Chip Select 5 Assignment
0 = EBI Chip Select 5 is only assigned to the Static Memory Controller and EBI_NCS5 behaves as defined by the SMC.

1 = EBI Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic (second slot) is activated.

• EBI_DBPUC: EBI Data Bus Pull-Up Configuration
0 = EBI D0 - D15 Data Bus bits are internally pulled-up to the VDDIO power supply.

1 = EBI D0 - D15 Data Bus bits are not internally pulled-up.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - EBI_DBPUC

7 6 5 4 3 2 1 0

- - EBI_CS5A EBI_CS4A EBI_CS3A - EBI_CS1A -
112
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
19.6.7 Matrix USB Pad Pull-up Control Register
Register Name: MATRIX_USBPCR

Access Type: Read/Write

Reset: 0x0000_0000

• PUP_IDLE: Pull-up Idle
0: Pad pull-up set on higher resistance

1: Pad pull-up set on lower resistance

• UDP_PUP_ON: UDP Pad Pull-up Enable
0: Pad pull-up disabled

1: Pad pull-up enabled

31 30 29 28 27 26 25 24

PUP_IDLE UDP_PUP_ON - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -
113
8549A–CAP–10/08

114
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
20. External Bus Interface (EBI)

20.1 Overview
The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an ARM®-based device. The
Static Memory and SDRAM Controllers are all featured external Memory Controllers on the EBI.
These external Memory Controllers are capable of handling several types of external memory
and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI also supports the CompactFlash and the NAND Flash protocols via integrated circuitry
that greatly reduces the requirements for external components. Furthermore, the EBI handles
data transfers with up to eight external devices, each assigned to eight address spaces defined
by the embedded Memory Controller. Data transfers are performed through a 16-bit or 32-bit
data bus, an address bus of up to 26 bits, up to eight chip select lines (NCS[7:0]) and several
control pins that are generally multiplexed between the different external Memory Controllers.
115
8549A–CAP–10/08

20.2 Block Diagram
Figure 20-1 shows the organization of the External Bus Interface.

Figure 20-1. Organization of the External Bus Interface

External Bus Interface

D[15:0]

A[15:2], A[22:18]

PIO

MUX
Logic

NAND Flash
Logic

CompactFlash
Logic

User Interface

Chip Select
 Assignor

Static
Memory

Controller

SDRAM
Controller

Bus Matrix

APB

AHB

Address Decoders

A16/BA0

A0/NBS0

A1/NWR2/NBS2

A17/BA1

NCS0

NCS3/NANDCS

NRD/CFOE

NCS1/SDCS

NCS2

NWR0/NWE/CFWE

NWR1/NBS1/CFIOR

NWR3/NBS3/CFIOW

SDCK

SDCKE

RAS

CAS

SDWE

D[31:16]

A[24:23]

A25/CFRNW

NCS4/CFCS0

NCS5/CFCS1

NCS6/NANDOE

NCS7/NANDWE

CFCE1

CFCE2

NWAIT

SDA10
116
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
20.3 I/O Lines Description

Table 20-1. I/O Lines Description

Name Function Type Active Level

EBI

D0 - D31 Data Bus I/O

A0 - A25 Address Bus Output

NWAIT External Wait Signal Input Low

SMC

NCS0 - NCS7 Chip Select Lines Output Low

NWR0 - NWR3 Write Signals Output Low

NRD Read Signal Output Low

NWE Write Enable Output Low

NBS0 - NBS3 Byte Mask Signals Output Low

EBI for CompactFlash Support

CFCE1 - CFCE2 CompactFlash Chip Enable Output Low

CFOE CompactFlash Output Enable Output Low

CFWE CompactFlash Write Enable Output Low

CFIOR CompactFlash I/O Read Signal Output Low

CFIOW CompactFlash I/O Write Signal Output Low

CFRNW CompactFlash Read Not Write Signal Output

CFCS0 - CFCS1 CompactFlash Chip Select Lines Output Low

EBI for NAND Flash Support

NANDCS NAND Flash Chip Select Line Output Low

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

SDRAM Controller

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Line Output Low

BA0 - BA1 Bank Select Output

SDWE SDRAM Write Enable Output Low

RAS - CAS Row and Column Signal Output Low

NWR0 - NWR3 Write Signals Output Low

NBS0 - NBS3 Byte Mask Signals Output Low

SDA10 SDRAM Address 10 Line Output
117
8549A–CAP–10/08

The connection of some signals through the MUX logic is not direct and depends on the Memory
Controller in use at the moment.

Table 20-2 on page 118 details the connections between the two Memory Controllers and the
EBI pins.

20.4 Application Example

20.4.1 Hardware Interface
Table 20-3 and Table 20-4 detail the connections to be applied between the EBI pins and the
external devices for each Memory Controller.

Table 20-2. EBI Pins and Memory Controllers I/O Lines Connections

EBI Pins SDRAMC I/O Lines SMC I/O Lines

NWR1/NBS1/CFIOR NBS1 NWR1/NUB

A0/NBS0 Not Supported SMC_A0/NLB

A1/NBS2/NWR2 Not Supported SMC_A1

A[11:2] SDRAMC_A[9:0] SMC_A[11:2]

SDA10 SDRAMC_A10 Not Supported

A12 Not Supported SMC_A12

A[14:13] SDRAMC_A[12:11] SMC_A[14:13]

A[25:15] Not Supported SMC_A[25:15]

D[31:16] D[31:16] D[31:16]

D[15:0] D[15:0] D[15:0]

Table 20-3. EBI Pins and External Static Devices Connections

Pins

Pins of the Interfaced Device

8-bit Static
Device

2 x 8-bit
Static

Devices

16-bit Static
Device

4 x 8-bit

Static
Devices

2 x 16-bit
Static

Devices

32-bit Static
Device

Controller SMC

D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7

D8 - D15 – D8 - D15 D8 - D15 D8 - D15 D8 - 15 D8 - 15

D16 - D23 – – – D16 - D23 D16 - D23 D16 - D23

D24 - D31 – – – D24 - D31 D24 - D31 D24 - D31

A0/NBS0 A0 – NLB – NLB(3) BE0(5)

A1/NWR2/NBS2 A1 A0 A0 WE(2) NLB(4) BE2(5)

A2 - A25 A[2:25] A[1:24] A[1:24] A[0:23] A[0:23] A[0:23]

NCS0 CS CS CS CS CS CS

NCS1/SDCS CS CS CS CS CS CS

NCS2 CS CS CS CS CS CS

NCS3/NANDCS CS CS CS CS CS CS

NCS4/CFCS0 CS CS CS CS CS CS
118
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Notes: 1. NWR1 enables upper byte writes. NWR0 enables lower byte writes.

2. NWRx enables corresponding byte x writes. (x = 0, 1, 2 or 3)

3. NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.

4. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.

5. BEx: Byte x Enable (x = 0,1,2 or 3)

NCS5/CFCS1 CS CS CS CS CS CS

NCS6/NAND0E CS CS CS CS CS CS

NCS7/NANDWE CS CS CS CS CS CS

NRD/CFOE OE OE OE OE OE OE

NWR0/NWE WE WE(1) WE WE(2) WE WE

NWR1/NBS1 – WE(1) NUB WE(2) NUB(3) BE1(5)

NWR3/NBS3 – – – WE(2) NUB(4) BE3(5)

Table 20-3. EBI Pins and External Static Devices Connections (Continued)

Pins

Pins of the Interfaced Device

8-bit Static
Device

2 x 8-bit
Static

Devices

16-bit Static
Device

4 x 8-bit

Static
Devices

2 x 16-bit
Static

Devices

32-bit Static
Device

Controller SMC

Table 20-4. EBI Pins and External Devices Connections

Pins

Pins of the Interfaced Device

SDRAM
Compact

Flash

Compact
Flash

True IDE Mode

NAND Flash

Controller SDRAMC SMC

D0 - D7 D0 - D7 D0 - D7 D0 - D7 AD0-AD7

D8 - D15 D8 - D15 D8 - 15 D8 - 15 AD8-AD15

D16 - D31 D16 - D31 – – –

A0/NBS0 DQM0 A0 A0 –

A1/NWR2/NBS2 DQM2 A1 A1 –

A2 - A10 A[0:8] A[2:10] A[2:10] –

A11 A9 – – –

SDA10 A10 – – –

A12 – – – –

A13 - A14 A[11:12] – – –

A15 – – – –

A16/BA0 BA0 – – –

A17/BA1 BA1 – – –

A18 - A20 – – – –

A21 – – – ALE(3)

A22 – REG REG CLE(3)
119
8549A–CAP–10/08

Note: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer
between the EBI data bus and the CompactFlash slot.

2. Any PIO line.

3. The CLE and ALE signals of the NAND Flash device may be driven by any address bit. For
details, see “NAND Flash Support” on page 127.

A23 - A24 – – – –

A25 – CFRNW(1) CFRNW(1) –

NCS0 – – – –

NCS1/SDCS CS – – –

NCS2 – – – –

NCS3/NANDCS – – – –

NCS4/CFCS0 – CFCS0(1) CFCS0(1) –

NCS5/CFCS1 – CFCS1(1) CFCS1(1) –

NCS6/NANDOE – – – OE

NCS7/NANDWE – – – WE

NRD/CFOE – OE – –

NWR0/NWE/CFWE – WE WE –

NWR1/NBS1/CFIOR DQM1 IOR IOR –

NWR3/NBS3/CFIOW DQM3 IOW IOW –

CFCE1 – CE1 CS0 –

CFCE2 – CE2 CS1 –

SDCK CLK – – –

SDCKE CKE – – –

RAS RAS – – –

CAS CAS – – –

SDWE WE – – –

NWAIT – WAIT WAIT –

Pxx(2) – CD1 or CD2 CD1 or CD2 –

Pxx(2) – – – CE

Pxx(2) – – – RDY

Table 20-4. EBI Pins and External Devices Connections (Continued)

Pins

Pins of the Interfaced Device

SDRAM
Compact

Flash

Compact

Flash
True IDE Mode

NAND Flash

Controller SDRAMC SMC
120
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
20.4.2 Connection Examples
Figure 20-2 shows an example of connections between the EBI and external devices.

Figure 20-2. EBI Connections to Memory Devices

20.5 Product Dependencies

20.5.1 I/O Lines
The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

EBI

D0-D31

A2-A15

RAS
CAS

SDCK
SDCKE
SDWE

A0/NBS0

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

NWR1/NBS1
A1/NWR2/NBS2

NWR3/NBS3

NCS1/SDCS

D0-D7 D8-D15

A16/BA0
A17/BA1
A18-A25

A10

SDA10

SDA10
A2-A11, A13

NCS0

NCS2
NCS3
NCS4
NCS5
NCS6
NCS7

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10 SDA10
A2-A11, A13

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

D16-D23 D24-D31

A10 SDA10
A2-A11, A13

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10
SDA10
A2-A11, A13

A16/BA0
A17/BA1

NBS0 NBS1

NBS3
NBS2

NRD
NWR0/NWE

128K x 8
SRAM

128K x 8
SRAM

D0-D7 D0-D7A0-A16 A0-A16
A1-A17 A1-A17

CS CS

OE
WE

D0-D7 D8-D15

OE
WENRD/NOE

A0/NWR0/NBS0
NRD/NOE

NWR1/NBS1

SDWE

SDWESDWE

SDWE
121
8549A–CAP–10/08

20.6 Functional Description
The EBI transfers data between the internal AHB Bus (handled by the Bus Matrix) and the exter-
nal memories or peripheral devices. It controls the waveforms and the parameters of the
external address, data and control busses and is composed of the following elements:

• Static Memory Controller (SMC)

• SDRAM Controller (SDRAMC)

• A chip select assignment feature that assigns an AHB address space to the external devices

• A multiplex controller circuit that shares the pins between the different Memory Controllers

• Programmable CompactFlash support logic

• Programmable NAND Flash support logic

20.6.1 Bus Multiplexing
The EBI offers a complete set of control signals that share the 32-bit data lines, the address
lines of up to 26 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

20.6.2 Pull-up Control
The CSA register in the Bus Matrix User Interface permits enabling of on-chip pull-up resistors
on the data bus lines not multiplexed with the PIO Controller lines. The pull-up resistors are
enabled after reset. Setting the DBPUC bit disables the pull-up resistors on the D0 to D15 lines.
Enabling the pull-up resistor on the D16-D31 lines can be performed by programming the appro-
priate PIO controller.

20.6.3 Static Memory Controller
For information on the Static Memory Controller, refer to the Static Memory Controller section.

20.6.4 SDRAM Controller
For information on the SDRAM Controller, refer to the SDRAM section.

20.6.5 CompactFlash Support
The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or
NCS5 address space. Programming the CS4A and/or CS5A bit of the CSA Register to the
appropriate value enables this logic. For details on this register, refer to the Bus Matrix User
Interface section. Access to an external CompactFlash device is then made by accessing the
address space reserved to NCS4 and/or NCS5 (i.e., between 0x5000 0000 and 0x5FFF FFFF
for NCS4 and between 0x6000 0000 and 0x6FFF FFFF for NCS5).

All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are sup-
ported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are
not handled.
122
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
20.6.5.1 I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode
Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish
I/O mode, common memory mode, attribute memory mode and True IDE mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
20-3. A[23:21] bits of the transfer address are used to select the desired mode as described in
Table 20-5 on page 123.

Figure 20-3. CompactFlash Memory Mapping

Note: The A22 pin of the EBI is used to drive the REG signal of the CompactFlash Device (except in
True IDE mode).

20.6.5.2 CFCE1 and CFCE2 signals
To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to
drive 8-bit memory devices on the corresponding NCS pin (NCS4 and or NCS5). The Chip
Select Register (DBW field in the corresponding Chip Select Mode Register) of the NCS4 and/or
NCS5 address space must be set as shown in Table 20-6 to enable the required access type.

NBS1 and NBS0 are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

Table 20-5. CompactFlash Mode Selection

A[23:21] Mode Base Address

000 Attribute Memory

010 Common Memory

100 I/O Mode

110 True IDE Mode

111 Alternate True IDE Mode

CF Address Space

Attribute Memory Mode Space

Common Memory Mode Space

I/O Mode Space

True IDE Mode Space

True IDE Alternate Mode Space

Offset 0x00E0 0000

Offset 0x00C0 0000

Offset 0x0080 0000

Offset 0x0040 0000

Offset 0x0000 0000
123
8549A–CAP–10/08

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the Static Memory Controller section.

20.6.5.3 Read/Write Signals
In I/O mode and True IDE mode, the CompactFlash logic drives the read and write command
signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deac-
tivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are
driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure
20-4 on page 125 demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.

Table 20-6. CFCE1 and CFCE2 Truth Table

Mode CFCE2 CFCE1 DBW Comment SMC Access Mode

Attribute Memory NBS1 NBS0 16 bits Access to Even Byte on D[7:0] Byte Select

Common Memory
NBS1 NBS0 16bits

Access to Even Byte on D[7:0]

Access to Odd Byte on D[15:8]
Byte Select

1 0 8 bits Access to Odd Byte on D[7:0]

I/O Mode
NBS1 NBS0 16 bits

Access to Even Byte on D[7:0]

Access to Odd Byte on D[15:8]
Byte Select

1 0 8 bits Access to Odd Byte on D[7:0]

True IDE Mode

Task File 1 0 8 bits
Access to Even Byte on D[7:0]

Access to Odd Byte on D[7:0]

Data Register 1 0 16 bits
Access to Even Byte on D[7:0]

Access to Odd Byte on D[15:8]
Byte Select

Alternate True IDE Mode

Control Register

Alternate Status Read
0 1

Don’t
Care

Access to Even Byte on D[7:0] Don’t Care

Drive Address 0 1 8 bits Access to Odd Byte on D[7:0]

Standby Mode or
Address Space is not
assigned to CF

1 1 – – –
124
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 20-4. CompactFlash Read/Write Control Signals

20.6.5.4 Multiplexing of CompactFlash Signals on EBI Pins
Table 20-8 on page 125 and Table 20-9 on page 126 illustrate the multiplexing of the Compact-
Flash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 20-8 are strictly
dedicated to the CompactFlash interface as soon as the CS4A and/or CS5A field of the CSA
Register is set. These pins must not be used to drive any other memory devices.

The EBI pins in Table 20-9 on page 126 remain shared between all memory areas when the cor-
responding CompactFlash interface is enabled (CS4A = 1 and/or CS5A = 1).

SMC

NRD
NWR0_NWE

A23

CFIOR
CFIOW

CFOE
CFWE

1
1

CompactFlash Logic

External Bus Interface

1
1

1
0

A22

1

0

1

0

1

0

Table 20-7. CompactFlash Mode Selection

Mode Base Address CFOE CFWE CFIOR CFIOW

Attribute Memory
Common Memory

NRD NWR0_NWE 1 1

I/O Mode 1 1 NRD NWR0_NWE

True IDE Mode 0 1 NRD NWR0_NWE

Table 20-8. Dedicated CompactFlash Interface Multiplexing

Pins
CompactFlash Signals EBI Signals

CS4A = 1 CS5A = 1 CS4A = 0 CS5A = 0

NCS4/CFCS0 CFCS0 NCS4

NCS5/CFCS1 CFCS1 NCS5
125
8549A–CAP–10/08

20.6.5.5 Application Example
Figure 20-5 on page 127 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCS0 signal is identical to the NCS4 signal. Moreover, the CFRNW signal
remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT sig-
nal is connected to the NWAIT input of the Static Memory Controller. For details on these
waveforms and timings, refer to the Static Memory Controller section.

Table 20-9. Shared CompactFlash Interface Multiplexing

Pins

Access to CompactFlash Device Access to Other EBI Devices

CompactFlash Signals EBI Signals

NRD/CFOE CFOE NRD

NWR0/NWE/CFWE CFWE NWR0/NWE

NWR1/NBS1/CFIOR CFIOR NWR1/NBS1

NWR3/NBS3/CFIOW CFIOW NWR3/NBS3

A25/CFRNW CFRNW A25
126
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 20-5. CompactFlash Application Example

20.6.6 NAND Flash Support
The EBI integrates circuitry that interfaces to NAND Flash devices.

The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the CS3A field in the CSA Register in the Bus Matrix User Interface to the appro-
priate value enables the NAND Flash logic. For details on this register, refer to the Bus Matrix
User Interface section. Access to an external NAND Flash device is then made by accessing the
address space reserved to NCS3 (i.e., between 0x40000000 and 0x4FFF FFFF).

The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. For details on these
waveforms, refer to the Static Memory Controller section.

The NANDOE and NANDWE signals are multiplexed with NCS6 and NCS7 signals of the Static
Memory Controller. This multiplexing is controlled in the MUX logic part of the EBI by the CS3A
bit in the in the CSA Register For details on this register, refer to the Bus Matrix User Interface
Section. NCS6 and NCS7 become unavailable. Performing an access within the address space
reserved to NCS6 and NCS7 (i.e., between 0x70000000 and 0x8FFF FFFF) may lead to an
unpredictable outcome.

CompactFlash ConnectorEBI

D[15:0]

/OEDIR

_CD1

_CD2

/OE

D[15:0]

A25/CFRNW

NCS4/CFCS0

CD (PIO)

A[10:0]

A22/REG

NRD/CFOE

A[10:0]

_REG

_OE

_WE

_IORD

_IOWR

_CE1

_CE2

NWE/CFWE

NWR1/CFIOR

NWR3/CFIOW

CFCE1

CFCE2

_WAITNWAIT
127
8549A–CAP–10/08

Figure 20-6. NAND Flash Signal Multiplexing on EBI Pins

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21 of the EBI address bus. The user should note that any bit on
the EBI address bus can also be used for this purpose. The command, address or data words
on the data bus of the NAND Flash device are distinguished by using their address within the
NCS3 address space. The chip enable (CE) signal of the device and the ready/busy (R/B) sig-
nals are connected to PIO lines. The CE signal then remains asserted even when NCS3 is not
selected, preventing the device from returning to standby mode.

SMC

NRD

NWR0_NWE

NANDOE

NANDWE

NAND Flash Logic

NCS3

MUX Logic

CS3A

NCS7_NANDWE

NCS6_NANDOE

CS3A

NCS7

NCS6
128
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 20-7. NAND Flash Application Example

Note: The External Bus Interface is also able to support 16-bits devices.

D[7:0]

ALE

NCS7/NANDWE

NCS6/NANDOE
NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

EBI

CE

NAND Flash

PIO

NCS3/NANDCS Not Connected
129
8549A–CAP–10/08

130
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21. Static Memory Controller (SMC)

21.1 Description
The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 8 Chip Selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, 16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write
signal waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

21.2 I/O Lines Description

21.3 Multiplexed Signals

Table 21-1. I/O Line Description

Name Description Type Active Level

NCS[7:0] Static Memory Controller Chip Select Lines Output Low

NRD Read Signal Output Low

NWR0/NWE Write 0/Write Enable Signal Output Low

A0/NBS0 Address Bit 0/Byte 0 Select Signal Output Low

NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low

A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low

NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low

A[25:2] Address Bus Output

D[31:0] Data Bus I/O

NWAIT External Wait Signal Input Low

Table 21-2. Static Memory Controller (SMC) Multiplexed Signals

Multiplexed Signals Related Function

NWR0 NWE
Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page
133

A0 NBS0 8-bit or 16-/32-bit data bus, see “Data Bus Width” on page 133

NWR1 NBS1 Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 133

A1 NWR2 NBS2
8-/16-bit or 32-bit data bus, see “Data Bus Width” on page 133.
Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page
133

NWR3 NBS3 Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 133
131
8549A–CAP–10/08

21.4 Application Example

21.4.1 Hardware Interface

Figure 21-1. SMC Connections to Static Memory Devices

21.5 Product Dependencies

21.5.1 I/O Lines
The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO
lines. The programmer must first program the PIO controller to assign the Static Memory Con-
troller pins to their peripheral function. If I/O Lines of the SMC are not used by the application,
they can be used for other putposes by the PIO Controller.

Static Memory
Controller

D0-D31

A2 - A25

A0/NBS0
NWR0/NWE

NWR1/NBS1
A1/NWR2/NBS2

NWR3/NBS3

128K x 8
SRAM

D0 - D7

A0 - A16

OE

WE

CS

D0 - D7 D8-D15

A2 - A18

128K x 8
SRAM

D0-D7

CS

D16 - D23 D24-D31

128K x 8
SRAM

D0-D7

CS

NWR1/NBS1

NWR3/NBS3

NRD

NWR0/NWE

128K x 8
SRAM

D0 - D7

OE

WE

CS

NRD

A1/NWR2/NBS2

NCS0
NCS1
NCS2
NCS3
NCS4
NCS5
NCS6
NCS7

A2 - A18A0 - A16

NRD
OE

WE

OE

WE

NRD

A2 - A18
A0 - A16

A2 - A18A0 - A16
132
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.6 External Memory Mapping
The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64 Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 21-2).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.

Figure 21-2. Memory Connections for Eight External Devices

21.7 Connection to External Devices

21.7.1 Data Bus Width
A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is con-
trolled by the field DBW in SMC_MODE (Mode Register) for the corresponding chip select.

Figure 21-3 shows how to connect a 512K x 8-bit memory on NCS2. Figure 21-4 shows how to
connect a 512K x 16-bit memory on NCS2. Figure 21-5 shows two 16-bit memories connected
as a single 32-bit memory

21.7.2 Byte Write or Byte Select Access
Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the BAT field of the
SMC_MODE register for the corresponding chip select.

NRD

NWE

A[25:0]

D[31:0]

8 or 16 or 32

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Output Enable

Write Enable

A[25:0]

D[31:0] or D[15:0] or
D[7:0]

NCS3

NCS0

NCS1

NCS2

NCS7

 NCS4

 NCS5

 NCS6

NCS[0] - NCS[7]

 SMC
133
8549A–CAP–10/08

Figure 21-3. Memory Connection for an 8-bit Data Bus

Figure 21-4. Memory Connection for a 16-bit Data Bus

Figure 21-5. Memory Connection for a 32-bit Data Bus

SMC

A0

NWE

NRD

NCS[2]

A0

Write Enable

Output Enable

Memory Enable

D[7:0] D[7:0]

A[18:2]A[18:2]

A1 A1

SMC NBS0

NWE

NRD

NCS[2]

Low Byte Enable

Write Enable

Output Enable

Memory Enable

NBS1 High Byte Enable

D[15:0] D[15:0]

A[19:2] A[18:1]

A[0]A1

D[31:16]

SMC NBS0

NWE

NRD

NCS[2]

NBS1

D[15:0]

A[20:2]

D[31:16]

NBS2

NBS3

Byte 0 Enable

Write Enable

Output Enable

Memory Enable

Byte 1 Enable

D[15:0]

A[18:0]

Byte 2 Enable

Byte 3 Enable
134
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.7.2.1 Byte Write Access
Byte write access supports one byte write signal per byte of the data bus and a single read
signal.

Note that the SMC does not allow boot in Byte Write Access mode.

• For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.

• For 32-bit devices: NWR0, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower
byte), byte1, byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided.

Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory.

Byte Write option is illustrated on Figure 21-6.

21.7.2.2 Byte Select Access
In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

• For 16-bit devices: the SMC provides NBS0 and NBS1 selection signals for respectively
byte0 (lower byte) and byte1 (upper byte) of a 16-bit bus.

Byte Select Access is used to connect one 16-bit device.

• For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower
byte), byte1, byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to
connect two 16-bit devices.

Figure 21-7 shows how to connect two 16-bit devices on a 32-bit data bus in Byte Select Access
mode, on NCS3 (BAT = Byte Select Access).
135
8549A–CAP–10/08

Figure 21-6. Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option

21.7.2.3 Signal Multiplexing
Depending on the BAT, only the write signals or the byte select signals are used. To save IOs at
the external bus interface, control signals at the SMC interface are multiplexed. Table 21-3
shows signal multiplexing depending on the data bus width and the byte access type.

For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused.
When Byte Select Option is selected, NWR1 to NWR3 are unused. When Byte Write option is
selected, NBS0 to NBS3 are unused.

SMC A1

NWR0

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NWR1

Write Enable

Read Enable

Memory Enable

D[7:0] D[7:0]

D[15:8]

D[15:8]

A[24:2]

A[23:1]

A[23:1]

A[0]

A[0]
136
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-7. Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option)

21.8 Standard Read and Write Protocols
In the following sections, the byte access type is not considered. Byte select lines (NBS0 to
NBS3) always have the same timing as the A address bus. NWE represents either the NWE sig-
nal in byte select access type or one of the byte write lines (NWR0 to NWR3) in byte write
access type. NWR0 to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..7] chip select lines.

SMC

NWE

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NBS0

D[15:0] D[15:0]

D[31:16]

A[25:2] A[23:0]

Write Enable

Read Enable

Memory Enable

D[31:16]

A[23:0]

Low Byte Enable

High Byte Enable

Low Byte Enable

High Byte EnableNBS1

NBS2

NBS3

Table 21-3. SMC Multiplexed Signal Translation

Signal Name 32-bit Bus 16-bit Bus 8-bit Bus

Device Type 1x32-bit 2x16-bit 4 x 8-bit 1x16-bit 2 x 8-bit 1 x 8-bit

Byte Access Type (BAT) Byte Select Byte Select Byte Write Byte Select Byte Write

NBS0_A0 NBS0 NBS0 NBS0 A0

NWE_NWR0 NWE NWE NWR0 NWE NWR0 NWE

NBS1_NWR1 NBS1 NBS1 NWR1 NBS1 NWR1

NBS2_NWR2_A1 NBS2 NBS2 NWR2 A1 A1 A1

NBS3_NWR3 NBS3 NBS3 NWR3
137
8549A–CAP–10/08

21.8.1 Read Waveforms
The read cycle is shown on Figure 21-8.

The read cycle starts with the address setting on the memory address bus, i.e.:

{A[25:2], A1, A0} for 8-bit devices

{A[25:2], A1} for 16-bit devices

A[25:2] for 32-bit devices.

Figure 21-8. Standard Read Cycle

21.8.1.1 NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD
falling edge;

2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD
rising edge;

3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD
rising edge.

A[25:2]

NBS0,NBS1,
NBS2,NBS3,
A0, A1

NCS

NRD_SETUP NRD_PULSE NRD_HOLD

MCK

NRD

D[31:0]

NCS_RD_SETUP NCS_RD_PULSE NCS_RD_HOLD

NRD_CYCLE
138
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.8.1.2 NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:

1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

21.8.1.3 Read Cycle
The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD

= NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define
the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE

NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

21.8.1.4 Null Delay Setup and Hold
If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 21-9).
139
8549A–CAP–10/08

Figure 21-9. No Setup, No Hold On NRD and NCS Read Signals

21.8.1.5 Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

21.8.2 Read Mode
As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The READ_MODE parameter in the SMC_MODE register
of the corresponding chip select indicates which signal of NRD and NCS controls the read
operation.

21.8.2.1 Read is Controlled by NRD (READ_MODE = 1):
Figure 21-10 shows the waveforms of a read operation of a typical asynchronous RAM. The
read data is available tPACC after the falling edge of NRD, and turns to ‘Z’ after the rising edge of
NRD. In this case, the READ_MODE must be set to 1 (read is controlled by NRD), to indicate
that data is available with the rising edge of NRD. The SMC samples the read data internally on
the rising edge of Master Clock that generates the rising edge of NRD, whatever the pro-
grammed waveform of NCS may be.

MCK

NRD_PULSE

NCS_RD_PULSE

NRD_CYCLE

NRD_PULSE NRD_PULSE

NCS_RD_PULSE NCS_RD_PULSE

NRD_CYCLE NRD_CYCLE

A[25:2]

NBS0,NBS1,
NBS2,NBS3,
A0, A1

NCS

NRD

D[31:0]
140
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-10. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

21.8.2.2 Read is Controlled by NCS (READ_MODE = 0)
Figure 21-11 shows the typical read cycle of an LCD module. The read data is valid tPACC after
the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data must be
sampled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is controlled
by NCS): the SMC internally samples the data on the rising edge of Master Clock that generates
the rising edge of NCS, whatever the programmed waveform of NRD may be.

Figure 21-11. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

Data Sampling

tPACC

MCK

A[25:2]

NBS0,NBS1,
NBS2,NBS3,
A0, A1

NCS

NRD

D[31:0]

Data Sampling

tPACC

MCK

D[31:0]

A[25:2]

NBS0,NBS1,
NBS2,NBS3,
A0, A1

NCS

NRD
141
8549A–CAP–10/08

21.8.3 Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 21-12. The write cycle
starts with the address setting on the memory address bus.

21.8.3.1 NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge;

2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge;

3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.

The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWR0 to NWR3.

21.8.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined:

1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

Figure 21-12. Write Cycle

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0, A1

NCS

NWE_SETUP NWE_PULSE NWE_HOLD

MCK

NWE

NCS_WR_SETUP NCS_WR_PULSE NCS_WR_HOLD

NWE_CYCLE
142
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.8.3.3 Write Cycle
The write_cycle time is defined as the total duration of the write cycle, that is, from the time
where address is set on the address bus to the point where address may change. The total write
cycle time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD

= NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE

NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

21.8.3.4 Null Delay Setup and Hold
If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 21-13). How-
ever, for devices that perform write operations on the rising edge of NWE or NCS, such as
SRAM, either a setup or a hold must be programmed.

Figure 21-13. Null Setup and Hold Values of NCS and NWE in Write Cycle

21.8.3.5 Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

NCS

MCK

NWE,
NWR0, NWR1,
NWR2, NWR3

D[31:0]

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0, A1
143
8549A–CAP–10/08

21.8.4 Write Mode
The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indi-
cates which signal controls the write operation.

21.8.4.1 Write is Controlled by NWE (WRITE_MODE = 1):
Figure 21-14 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is
put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are
turned out after the NWE_SETUP time, and until the end of the write cycle, regardless of the
programmed waveform on NCS.

Figure 21-14. WRITE_MODE = 1. The write operation is controlled by NWE

21.8.4.2 Write is Controlled by NCS (WRITE_MODE = 0)
Figure 21-15 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is
put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are
turned out after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of
the programmed waveform on NWE.

MCK

D[31:0]

NCS

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0, A1

NWE,
NWR0, NWR1,
NWR2, NWR3
144
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-15. WRITE_MODE = 0. The write operation is controlled by NCS

21.8.5 Coding Timing Parameters
All timing parameters are defined for one chip select and are grouped together in one
SMC_REGISTER according to their type.

The SMC_SETUP register groups the definition of all setup parameters:

• NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP

The SMC_PULSE register groups the definition of all pulse parameters:

• NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE

The SMC_CYCLE register groups the definition of all cycle parameters:

• NRD_CYCLE, NWE_CYCLE

Table 21-4 shows how the timing parameters are coded and their permitted range.

MCK

D[31:0]

NCS

NWE,
NWR0, NWR1,
NWR2, NWR3

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0, A1

Table 21-4. Coding and Range of Timing Parameters

Coded Value Number of Bits Effective Value

Permitted Range

Coded Value Effective Value

setup [5:0] 6 128 x setup[5] + setup[4:0] 0 ≤ ≤ 31 128 ≤ ≤ 128+31

pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 ≤ ≤ 63 256 ≤ ≤ 256+63

cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 ≤ ≤ 127
256 ≤ ≤ 256+127
512 ≤ ≤ 512+127

768 ≤ ≤ 768+127
145
8549A–CAP–10/08

21.8.6 Reset Values of Timing Parameters
Table 21-5 gives the default value of timing parameters at reset.

21.8.7 Usage Restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE =
1 only. See “Early Read Wait State” on page 147.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

21.9 Automatic Wait States
Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

21.9.1 Chip Select Wait States
The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBS0 to NBS3, NWR0 to
NWR3, NCS[0..7], NRD lines are all set to 1.

Figure 21-16 illustrates a chip select wait state between access on Chip Select 0 and Chip
Select 2.

Table 21-5. Reset Values of Timing Parameters

Register Reset Value

SMC_SETUP SMC_SETUP All setup timings are set to 1

SMC_PULSE SMC_PULSE All pulse timings are set to 1

SMC_CYCLE SMC_CYCLE
The read and write operation last 3 Master Clock
cycles and provide one hold cycle

WRITE_MODE 1 Write is controlled with NWE

READ_MODE 1 Read is controlled with NRD
146
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-16. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2

21.9.2 Early Read Wait State
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

• if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 21-17).

• in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS
signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure
21-18). The write operation must end with a NCS rising edge. Without an Early Read Wait
State, the write operation could not complete properly.

• in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD =
0), the feedback of the write control signal is used to control address, data, chip select and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 21-19.

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0,A1

NCS0

NRD_CYCLE

Chip Select
Wait State

NWE_CYCLE

MCK

NCS2

NRD

NWE

D[31:0]

Read to Write
Wait State
147
8549A–CAP–10/08

Figure 21-17. Early Read Wait State: Write with No Hold Followed by Read with No Setup

Figure 21-18. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup

write cycle Early Read
wait state

MCK

NRD

NWE

read cycle

no setup

no hold

D[31:0]

NBS0, NBS1,
NBS2, NBS3,
A0, A1

A[25:2]

write cycle
(WRITE_MODE = 0)

Early Read
wait state

MCK

NRD

NCS

read cycle
(READ_MODE = 0 or READ_MODE = 1)

no setupno hold

D[31:0]

NBS0, NBS1,
NBS2, NBS3,
A0,A1

A[25:2]
148
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-19. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle

21.9.3 Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.

21.9.3.1 User Procedure
To insert a Reload Configuration Wait State, the SMC detects a write access to any
SMC_MODE register of the user interface. If the user only modifies timing registers
(SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the user interface, he must validate
the modification by writing the SMC_MODE, even if no change was made on the mode
parameters.

21.9.3.2 Slow Clock Mode Transition
A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see “Slow Clock Mode” on page 160).

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0, A1

write cycle
(WRITE_MODE = 1)

Early Read
wait state

MCK

NRD

internal write controlling signal

external write controlling signal
(NWE)

D[31:0]

read cycle
(READ_MODE = 0 or READ_MODE = 1)

no hold read setup = 1
149
8549A–CAP–10/08

21.9.4 Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 21-16 on page 147.

21.10 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

• before starting a read access to a different external memory

• before starting a write access to the same device or to a different external one.

The Data Float Output Time (tDF) for each external memory device is programmed in the
TDF_CYCLES field of the SMC_MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tDF will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the SMC_MODE register for the corresponding chip select.

21.10.1 READ_MODE
Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 21-20 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 21-21 shows the read oper-
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.
150
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-20. TDF Period in NRD Controlled Read Access (TDF = 2)

Figure 21-21. TDF Period in NCS Controlled Read Operation (TDF = 3)

NBS0, NBS1,
NBS2, NBS3,
A0, A1

NCS

NRD controlled read operation

tpacc

MCK

NRD

D[31:0]

TDF = 2 clock cycles

A[25:2]

NCS

TDF = 3 clock cycles

tpacc

MCK

D[31:0]

NCS controlled read operation

A[25:2]

NBS0, NBS1,
NBS2, NBS3,
A0,A1

NRD
151
8549A–CAP–10/08

21.10.2 TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the
SMC takes advantage of the setup period of the next access to optimize the number of wait
states cycle to insert.

Figure 21-22 shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)

NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)

TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

Figure 21-22. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

21.10.3 TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that
the data float period is ended when the second access begins. If the hold period of the read1
controlling signal overlaps the data float period, no additional tdf wait states will be inserted.

Figure 21-23, Figure 21-24 and Figure 21-25 illustrate the cases:

• read access followed by a read access on another chip select,

• read access followed by a write access on another chip select,

• read access followed by a write access on the same chip select,

with no TDF optimization.

A[25:2]

NCS0

MCK

NRD

NWE

D[31:0]

Read to Write
Wait State

TDF_CYCLES = 6

read access on NCS0 (NRD controlled)

NRD_HOLD= 4

NWE_SETUP= 3

write access on NCS0 (NWE controlled)
152
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-23. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip
selects

Figure 21-24. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

TDF_CYCLES = 6

TDF_CYCLES = 6 TDF_MODE = 0
 (optimization disabled)

A[25:2]

read1 cycle

Chip Select Wait State

MCK

read1 controlling signal
(NRD)

read2 controlling signal
(NRD)

D[31:0]

read1 hold = 1

read 2 cycle

read2 setup = 1

5 TDF WAIT STATES

NBS0, NBS1,
NBS2, NBS3,
A0, A1

TDF_CYCLES = 4

TDF_CYCLES = 4 TDF_MODE = 0
 (optimization disabled)

A[25:2]

read1 cycle

Chip Select
 Wait State

Read to Write
Wait State

MCK

read1 controlling signal
(NRD)

write2 controlling signal
(NWE)

D[31:0]

read1 hold = 1

write2 cycle

write2 setup = 1

2 TDF WAIT STATES

NBS0, NBS1,
NBS2, NBS3,
A0, A1
153
8549A–CAP–10/08

Figure 21-25. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

21.11 External Wait
Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be
set to either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00”
(disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT
signal delays the read or write operation in regards to the read or write controlling signal,
depending on the read and write modes of the corresponding chip select.

21.11.1 Restriction
When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be
used in Page Mode (“Asynchronous Page Mode” on page 163), or in Slow Clock Mode (“Slow
Clock Mode” on page 160).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

TDF_CYCLES = 5

TDF_CYCLES = 5

TDF_MODE = 0
(optimization disabled)

A[25:2]

read1 cycle

Read to Write
Wait State

MCK

read1 controlling signal
(NRD)

write2 controlling signal
(NWE)

D[31:0]

read1 hold = 1

write2 cycle

write2 setup = 1

4 TDF WAIT STATES

NBS0, NBS1,
NBS2, NBS3,
A0, A1
154
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.11.2 Frozen Mode
When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 21-
26. This mode must be selected when the external device uses the NWAIT signal to delay the
access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
21-27.

Figure 21-26. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5
NCS_WR_PULSE = 7

A[25:2]

MCK

NWE

NCS

4 3 2 1 1 1 01

456 3 2 2 2 2 1 0

Write cycle

D[31:0]

NWAIT

FROZEN STATE

NBS0, NBS1,
NBS2, NBS3,
A0,A1

internally synchronized
NWAIT signal
155
8549A–CAP–10/08

Figure 21-27. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE =5, NCS_RD_HOLD =3

A[25:2]

MCK

NCS

NRD

1 0

4 3

4 3

2

5 5 5

2 2 0
2 1 0

2 1 0

1

Read cycle

Assertion is ignored

NWAIT

internally synchronized
NWAIT signal

FROZEN STATE

NBS0, NBS1,
NBS2, NBS3,
A0,A1
156
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.11.3 Ready Mode
In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In
the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 21-28 and Figure 21-29. After
deassertion, the access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 21-29.

Figure 21-28. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5
NCS_WR_PULSE = 7

A[25:2]

MCK

NWE

NCS

4 3 2 1 0 00

456 3 2 1 1 1 0

Write cycle

D[31:0]

NWAIT

internally synchronized
NWAIT signal

Wait STATE

NBS0, NBS1,
NBS2, NBS3,
A0,A1
157
8549A–CAP–10/08

Figure 21-29. NWAIT Assertion in Read Access: Ready Mode (EXNW_MODE = 11)

EXNW_MODE = 11(Ready mode)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 7
NCS_RD_PULSE =7

A[25:2]

MCK

NCS

NRD

456 3 2 0 0

0

1

456 3 2 11

Read cycle

Assertion is ignored

NWAIT

internally synchronized
NWAIT signal

Wait STATE

Assertion is ignored

NBS0, NBS1,
NBS2, NBS3,
A0,A1
158
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.11.4 NWAIT Latency and Read/write Timings
There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Fig-
ure 21-30.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 21-30. NWAIT Latency

EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)

NRD_PULSE = 5

A[25:2]

MCK

NRD

4 3 2 1 0 00

Read cycle

minimal pulse length

NWAIT latency

NWAIT

intenally synchronized
NWAIT signal

WAIT STATE

2 cycle resynchronization

NBS0, NBS1,
NBS2, NBS3,
A0,A1
159
8549A–CAP–10/08

21.12 Slow Clock Mode
The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because MCK has
been turned to a very slow clock rate (typically 32kHz clock rate). In this mode, the user-pro-
grammed waveforms are ignored and the slow clock mode waveforms are applied. This mode is
provided so as to avoid reprogramming the User Interface with appropriate waveforms at very
slow clock rate. When activated, the slow mode is active on all chip selects.

21.12.1 Slow Clock Mode Waveforms
Figure 21-31 illustrates the read and write operations in slow clock mode. They are valid on all
chip selects. Table 21-6 indicates the value of read and write parameters in slow clock mode.

Figure 21-31. Read/write Cycles in Slow Clock Mode

A[25:2]

NCS

1

MCK

NWE 1

1

NWE_CYCLE = 3

A[25:2]

MCK

NRD

NRD_CYCLE = 2

1

1
NCS

SLOW CLOCK MODE WRITE SLOW CLOCK MODE READ

NBS0, NBS1,
NBS2, NBS3,
A0,A1

NBS0, NBS1,
NBS2, NBS3,
A0,A1

Table 21-6. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)

NRD_SETUP 1 NWE_SETUP 1

NRD_PULSE 1 NWE_PULSE 1

NCS_RD_SETUP 0 NCS_WR_SETUP 0

NCS_RD_PULSE 2 NCS_WR_PULSE 3

NRD_CYCLE 2 NWE_CYCLE 3
160
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.12.2 Switching from (to) Slow Clock Mode to (from) Normal Mode
When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters.See Figure 21-32 on
page 161. The external device may not be fast enough to support such timings.

Figure 21-33 illustrates the recommended procedure to properly switch from one mode to the
other.

Figure 21-32. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

A[25:2]

NCS

1

MCK

NWE

11

NWE_CYCLE = 3

SLOW CLOCK MODE WRITE

Slow Clock Mode
internal signal from PMC

1 1 1 2 3 2

NWE_CYCLE = 7

NORMAL MODE WRITE

Slow clock mode transition is detected:
Reload Configuration Wait State

This write cycle finishes with the slow clock mode set
of parameters after the clock rate transition

SLOW CLOCK MODE WRITE

NBS0, NBS1,
NBS2, NBS3,
A0,A1
161
8549A–CAP–10/08

Figure 21-33. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

A[25:2]

NCS

1

MCK

NWE

11

SLOW CLOCK MODE WRITE

Slow Clock Mode
internal signal from PMC

2 3 2

NORMAL MODE WRITEIDLE STATE

Reload Configuration
Wait State

NBS0, NBS1,
NBS2, NBS3,
A0,A1
162
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.13 Asynchronous Page Mode
The SMC supports asynchronous burst reads in page mode, providing that the page mode is
enabled in the SMC_MODE register (PMEN field). The page size must be configured in the
SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 21-7.

With page mode memory devices, the first access to one page (tpa) takes longer than the subse-
quent accesses to the page (tsa) as shown in Figure 21-34. When in page mode, the SMC
enables the user to define different read timings for the first access within one page, and next
accesses within the page.

Notes: 1. A denotes the address bus of the memory device

2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.

21.13.1 Protocol and Timings in Page Mode
Figure 21-34 shows the NRD and NCS timings in page mode access.

Figure 21-34. Page Mode Read Protocol (Address MSB and LSB are defined in Table 21-7)

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS

Table 21-7. Page Address and Data Address within a Page

Page Size Page Address(1) Data Address in the Page(2)

4 bytes A[25:2] A[1:0]

8 bytes A[25:3] A[2:0]

16 bytes A[25:4] A[3:0]

32 bytes A[25:5] A[4:0]

A[MSB]

NCS

MCK

NRD

D[31:0]

NCS_RD_PULSE NRD_PULSENRD_PULSE

tsatpa tsa

A[LSB]
163
8549A–CAP–10/08

timings are identical. The pulse length of the first access to the page is defined with the
NCS_RD_PULSE field of the SMC_PULSE register. The pulse length of subsequent accesses
within the page are defined using the NRD_PULSE parameter.

In page mode, the programming of the read timings is described in Table 21-8:

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE
timings as page access timing (tpa) and the NRD_PULSE for accesses to the page (tsa), even if
the programmed value for tpa is shorter than the programmed value for tsa.

21.13.2 Byte Access Type in Page Mode
The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page
mode devices that require byte select ion signals, configure the BAT f ield of the
SMC_REGISTER to 0 (byte select access type).

21.13.3 Page Mode Restriction
The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

21.13.4 Sequential and Non-sequential Accesses
If the chip select and the MSB of addresses as defined in Table 21-7 are identical, then the cur-
rent access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tsa). Figure 21-35 illustrates access to an 8-bit memory device in
page mode, with 8-byte pages. Access to D1 causes a page access with a long access time
(tpa). Accesses to D3 and D7, though they are not sequential accesses, only require a short
access time (tsa).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Table 21-8. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE ‘x’ No impact

NCS_RD_SETUP ‘x’ No impact

NCS_RD_PULSE tpa Access time of first access to the page

NRD_SETUP ‘x’ No impact

NRD_PULSE tsa Access time of subsequent accesses in the page

NRD_CYCLE ‘x’ No impact
164
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 21-35. Access to Non-sequential Data within the Same Page

A[25:3]

A[2], A1, A0

NCS

MCK

NRD

Page address

A1 A3 A7

D[7:0]

NCS_RD_PULSE NRD_PULSENRD_PULSE

D1 D3 D7
165
8549A–CAP–10/08

21.14 Static Memory Controller (SMC) User Interface
The SMC is programmed using the registers listed in Table 21-9. For each chip select, a set of 4 registers is used to pro-
gram the parameters of the external device connected on it. In Table 21-9, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the SMC_MODE registers.

Table 21-9. SMC Register Mapping

Offset Register Name Access Reset State

0x10 x CS_number + 0x00 SMC Setup Register SMC_SETUP Read/Write SMC_SETUP

0x10 x CS_number + 0x04 SMC Pulse Register SMC_PULSE Read/Write SMC_PULSE

0x10 x CS_number + 0x08 SMC Cycle Register SMC_CYCLE Read/Write SMC_CYCLE

0x10 x CS_number + 0x0C SMC Mode Register SMC_MODE Read/Write SMC_MODE
166
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.14.1 SMC Setup Register
Register Name: SMC_SETUP[0 ..7]

Access Type: Read/Write

• NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles

• NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles

• NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

• NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

31 30 29 28 27 26 25 24

– – NCS_RD_SETUP

23 22 21 20 19 18 17 16

– – NRD_SETUP

15 14 13 12 11 10 9 8

– – NCS_WR_SETUP

7 6 5 4 3 2 1 0

– – NWE_SETUP
167
8549A–CAP–10/08

21.14.2 SMC Pulse Register
Register Name: SMC_PULSE[0..7]

Access Type: Read/Write

• NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles

The NWE pulse length must be at least 1 clock cycle.

• NCS_WR_PULSE: NCS Pulse Length in WRITE Access
In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

• NRD_PULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

• NCS_RD_PULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

31 30 29 28 27 26 25 24

– NCS_RD_PULSE

23 22 21 20 19 18 17 16

– NRD_PULSE

15 14 13 12 11 10 9 8

– NCS_WR_PULSE

7 6 5 4 3 2 1 0

– NWE_PULSE
168
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.14.3 SMC Cycle Register
Register Name: SMC_CYCLE[0..7]

Access Type: Read/Write

• NWE_CYCLE: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

• NRD_CYCLE: Total Read Cycle Length
The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

31 30 29 28 27 26 25 24

– – – – – – – NRD_CYCLE

23 22 21 20 19 18 17 16

NRD_CYCLE

15 14 13 12 11 10 9 8

– – – – – – – NWE_CYCLE

7 6 5 4 3 2 1 0

NWE_CYCLE
169
8549A–CAP–10/08

21.14.4 SMC MODE Register
Register Name: SMC_MODE[0..7]

Access Type: Read/Write

• READ_MODE:
1: The read operation is controlled by the NRD signal.

– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.

0: The read operation is controlled by the NCS signal.

– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

• WRITE_MODE
1: The write operation is controlled by the NWE signal.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.

0: The write operation is controlled by the NCS signal.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

• EXNW_MODE: NWAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

• Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.

• Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.

• Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

31 30 29 28 27 26 25 24

– – PS – – – PMEN

23 22 21 20 19 18 17 16

– – – TDF_MODE TDF_CYCLES

15 14 13 12 11 10 9 8

– – DBW – – – BAT

7 6 5 4 3 2 1 0

– – EXNW_MODE – – WRITE_MODE READ_MODE

EXNW_MODE NWAIT Mode

0 0 Disabled

0 1 Reserved

1 0 Frozen Mode

1 1 Ready Mode
170
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.

• 1: Byte write access type:

– Write operation is controlled using NCS, NWR0, NWR1, NWR2, NWR3.

– Read operation is controlled using NCS and NRD.

• 0: Byte select access type:

– Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2 and NBS3

– Read operation is controlled using NCS, NRD, NBS0, NBS1, NBS2 and NBS3

• DBW: Data Bus Width

• TDF_CYCLES: Data Float Time
This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

• TDF_MODE: TDF Optimization
1: TDF optimization is enabled.

– The number of TDF wait states is optimized using the setup period of the next read/write access.

0: TDF optimization is disabled.

– The number of TDF wait states is inserted before the next access begins.

• PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.

0: Standard read is applied.

• PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

DBW Data Bus Width

0 0 8-bit bus

0 1 16-bit bus

1 0 32-bit bus

1 1 Reserved

PS Page Size

0 0 4-byte page

0 1 8-byte page

1 0 16-byte page

1 1 32-byte page
171
8549A–CAP–10/08

172
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
22. SDRAM Controller (HSDRAMC)

22.1 Description
The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing
the interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges
from 2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit),
half-word (16-bit) and word (32-bit) accesses.

The SDRAM Controller supports a read or write burst length of one location. It keeps
track of the active row in each bank, thus maximizing SDRAM performance, e.g., the
application may be placed in one bank and data in the other banks. So as to optimize per-
formance, it is advisable to avoid accessing different rows in the same bank.

The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access
depending on the frequency.

The different modes available - self-refresh, power-down and deep power-down modes - mini-
mize power consumption on the SDRAM device.

22.2 I/O Lines Description

22.3 Application Example

22.4 Software Interface
The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller
allows mapping different memory types according to the values set in the SDRAMC configura-
tion register.

The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 22-2 to Table 22-7 illustrate the SDRAM device memory mapping seen by the
user in correlation with the device structure. Various configurations are illustrated.

Table 22-1. I/O Line Description

Name Description Type Active Level

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Output Low

BA[1:0] Bank Select Signals Output

RAS Row Signal Output Low

CAS Column Signal Output Low

SDWE SDRAM Write Enable Output Low

NBS[3:0] Data Mask Enable Signals Output Low

SDRAMC_A[12:0] Address Bus Output

D[31:0] Data Bus I/O
173
8549A–CAP–10/08

22.4.1 32-bit Memory Data Bus Width

Notes: 1. M[1:0] is the byte address inside a 32-bit word.
2. Bk[1] = BA1, Bk[0] = BA0.

Table 22-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[10:0] Column[7:0] M[1:0]

Bk[1:0] Row[10:0] Column[8:0] M[1:0]

Bk[1:0] Row[10:0] Column[9:0] M[1:0]

Bk[1:0] Row[10:0] Column[10:0] M[1:0]

Table 22-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[11:0] Column[7:0] M[1:0]

Bk[1:0] Row[11:0] Column[8:0] M[1:0]

Bk[1:0] Row[11:0] Column[9:0] M[1:0]

Bk[1:0] Row[11:0] Column[10:0] M[1:0]

Table 22-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[12:0] Column[7:0] M[1:0]

Bk[1:0] Row[12:0] Column[8:0] M[1:0]

Bk[1:0] Row[12:0] Column[9:0] M[1:0]

Bk[1:0] Row[12:0] Column[10:0] M[1:0]
174
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
22.4.2 16-bit Memory Data Bus Width

Notes: 1. M0 is the byte address inside a 16-bit half-word.
2. Bk[1] = BA1, Bk[0] = BA0.

Table 22-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[10:0] Column[7:0] M
0

Bk[1:0] Row[10:0] Column[8:0] M
0

Bk[1:0] Row[10:0] Column[9:0] M
0

Bk[1:0] Row[10:0] Column[10:0] M
0

Table 22-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[11:0] Column[7:0] M
0

Bk[1:0] Row[11:0] Column[8:0] M
0

Bk[1:0] Row[11:0] Column[9:0] M
0

Bk[1:0] Row[11:0] Column[10:0] M
0

Table 22-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[12:0] Column[7:0] M
0

Bk[1:0] Row[12:0] Column[8:0] M
0

Bk[1:0] Row[12:0] Column[9:0] M
0

Bk[1:0] Row[12:0] Column[10:0] M
0

175
8549A–CAP–10/08

22.5 Product Dependencies

22.5.1 SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1. SDRAM features must be set in the configuration register: asynchronous timings (TRC,
TRAS, etc.), number of columns, rows, CAS latency, and the data bus width.

2. For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength
(DS) and partial array self refresh (PASR) must be set in the Low Power Register.

3. The SDRAM memory type must be set in the Memory Device Register.

4. A minimum pause of 200 μs is provided to precede any signal toggle.

5. (1)A NOP command is issued to the SDRAM devices. The application must set Mode to
1 in the Mode Register and perform a write access to any SDRAM address.

6. An All Banks Precharge command is issued to the SDRAM devices. The application
must set Mode to 2 in the Mode Register and perform a write access to any SDRAM
address.

7. Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in
the Mode Register and perform a write access to any SDRAM location eight times.

8. A Mode Register set (MRS) cycle is issued to program the parameters of the SDRAM
devices, in particular CAS latency and burst length. The application must set Mode to 3
in the Mode Register and perform a write access to the SDRAM. The write address
must be chosen so that BA[1:0] are set to 0. For example, with a 16-bit 128 MB SDRAM
(12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should be done
at the address 0x20000000.

9. For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle is
issued to program the SDRAM parameters (TCSR, PASR, DS). The application must
set Mode to 5 in the Mode Register and perform a write access to the SDRAM. The
write address must be chosen so that BA[1] or BA[0] are set to 1. For example, with a
16-bit 128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write
access should be done at the address 0x20800000 or 0x20400000.

10. The application must go into Normal Mode, setting Mode to 0 in the Mode Register and
performing a write access at any location in the SDRAM.

11. Write the refresh rate into the count field in the SDRAMC Refresh Timer register.
(Refresh rate = delay between refresh cycles). The SDRAM device requires a refresh
every 15.625 μs or 7.81 μs. With a 100 MHz frequency, the Refresh Timer Counter
Register must be set with the value 1562(15.652 μs x 100 MHz) or 781(7.81 μs x 100
MHz).

After initialization, the SDRAM devices are fully functional.

Note: 1. It is strongly recommended to respect the instructions stated in Step 5 of the initialization pro-
cess in order to be certain that the subsequent commands issued by the SDRAMC will be
taken into account.
176
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 22-1. SDRAM Device Initialization Sequence

22.5.2 I/O Lines
The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they
can be used for other purposes by the PIO Controller.

22.5.3 Interrupt
The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Control-
ler. This interrupt may be ORed with other System Peripheral interrupt lines and is finally
provided as the System Interrupt Source (Source 1) to the AIC (Advanced Interrupt Controller).

Using the SDRAM Controller interrupt requires the AIC to be programmed first.

22.6 Functional Description

22.6.1 SDRAM Controller Write Cycle
The SDRAM Controller allows burst access or single access. In both cases, the SDRAM control-
ler keeps track of the active row in each bank, thus maximizing performance. To initiate a burst
access, the SDRAM Controller uses the transfer type signal provided by the master requesting
the access. If the next access is a sequential write access, writing to the SDRAM device is car-
ried out. If the next access is a write-sequential access, but the current access is to a boundary
page, or if the next access is in another row, then the SDRAM Controller generates a precharge
command, activates the new row and initiates a write command. To comply with SDRAM timing

SDCK

SDRAMC_A[9:0]

A10

SDRAMC_A[12:11]

SDCS

RAS

CAS

SDWE

NBS

Inputs Stable for
200 μsec

Precharge All Banks 1st Auto-refresh 8th Auto-refresh MRS Command Valid Command

SDCKE tRP tRC tMRD
177
8549A–CAP–10/08

parameters, additional clock cycles are inserted between precharge/active (tRP) commands and
active/write (tRCD) commands. For definition of these timing parameters, refer to the “SDRAMC
Configuration Register” on page 187. This is described in Figure 22-2 below.

Figure 22-2. Write Burst, 32-bit SDRAM Access

22.6.2 SDRAM Controller Read Cycle
The SDRAM Controller allows burst access, incremental burst of unspecified length or single
access. In all cases, the SDRAM Controller keeps track of the active row in each bank, thus
maximizing performance of the SDRAM. If row and bank addresses do not match the previous
row/bank address, then the SDRAM controller automatically generates a precharge command,
activates the new row and starts the read command. To comply with the SDRAM timing param-
eters, additional clock cycles on SDCK are inserted between precharge and active commands
(tRP) and between active and read command (tRCD). These two parameters are set in the config-
uration register of the SDRAM Controller. After a read command, additional wait states are
generated to comply with the CAS latency (1, 2 or 3 clock delays specified in the configuration
register).

For a single access or an incremented burst of unspecified length, the SDRAM Controller antici-
pates the next access. While the last value of the column is returned by the SDRAM Controller
on the bus, the SDRAM Controller anticipates the read to the next column and thus anticipates
the CAS latency. This reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf Dng Dnh Dni Dnj Dnk Dnl

Row n col a col b col c col d col e col f col g col h col i col j col k col l
178
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 22-3. Read Burst, 32-bit SDRAM Access

22.6.3 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and initi-
ates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tRP) command and the active/read (tRCD) com-
mand. This is described in Figure 22-4 below.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(Input)

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2
179
8549A–CAP–10/08

Figure 22-4. Read Burst with Boundary Row Access

22.6.4 SDRAM Controller Refresh Cycles
An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. An internal timer is
loaded with the value in the register SDRAMC_TR that indicates the number of clock cycles
between refresh cycles.

A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It is acknowledged by reading the Interrupt Status Register (SDRAMC_ISR).

When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the
device is busy and the master is held by a wait signal. See Figure 22-5.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]

TRP = 3

SDWE

Row mcol a col a col b col c col d col e

Dna Dnb Dnc Dnd

TRCD = 3 CAS = 2

col b col c col d

Dma Dmb Dmc Dmd

Row n

Dme
180
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 22-5. Refresh Cycle Followed by a Read Access

22.6.5 Power Management
Three low-power modes are available:

• Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the
SDRAM Controller. Current drained by the SDRAM is very low.

• Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between
auto-refresh cycles, the SDRAM is in power-down. Current drained in Power-down mode is
higher than in Self-refresh Mode.

• Deep Power-down Mode: (Only available with Mobile SDRAM) The SDRAM contents are
lost, but the SDRAM does not drain any current.

The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not
selected. It is possible to delay the entry in self-refresh and power-down mode after the last
access by programming a timeout value in the Low Power Register.

22.6.5.1 Self-refresh Mode
This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register.
In self-refresh mode, the SDRAM device retains data without external clocking and provides its
own internal clocking, thus performing its own auto-refresh cycles. All the inputs to the SDRAM
device become “don’t care” except SDCKE, which remains low. As soon as the SDRAM device
is selected, the SDRAM Controller provides a sequence of commands and exits self-refresh
mode.

Some low-power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self-refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)
and Drive Strength (DS) parameters must be set in the Low Power Register and transmitted to
the low-power SDRAM during initialization.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(input)

tRP = 3

SDWE

Dnb Dnc Dnd

col c col d

CAS = 2

Row m col a

tRC = 8 tRCD = 3

Dma

Row n
181
8549A–CAP–10/08

The SDRAM device must remain in self-refresh mode for a minimum period of tRAS and may
remain in self-refresh mode for an indefinite period. This is described in Figure 22-6.

Figure 22-6. Self-refresh Mode Behavior

22.6.5.2 Low-power Mode
This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register.
Power consumption is greater than in self-refresh mode. All the input and output buffers of the
SDRAM device are deactivated except SDCKE, which remains low. In contrast to self-refresh
mode, the SDRAM device cannot remain in low-power mode longer than the refresh period (64
ms for a whole device refresh operation). As no auto-refresh operations are performed by the
SDRAM itself, the SDRAM Controller carries out the refresh operation. The exit procedure is
faster than in self-refresh mode.

This is described in Figure 22-7.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

Self Refresh Mode

SDWE

Row

TXSR = 3

SDCKE

Write
SDRAMC_SRR

SRCB = 1

Access Request
to the SDRAM Controller
182
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 22-7. Low-power Mode Behavior

22.6.5.3 Deep Power-down Mode
This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register.
When this mode is activated, all internal voltage generators inside the SDRAM are stopped and
all data is lost.

When this mode is enabled, the application must not access to the SDRAM until a new initializa-
tion sequence is done (See “SDRAM Device Initialization” on page 176).

This is described in Figure 22-8.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(input)

TRCD = 3

Dna Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2

SDCKE

Low Power Mode
183
8549A–CAP–10/08

Figure 22-8. Deep Power-down Mode Behavior

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(input)

tRP = 3

SDWE

Dnb Dnc Dnd

col c col d

Row n

CKE
184
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
22.7 SDRAM Controller User Interface

Table 22-8. SDRAM Controller Memory Map

Offset Register Name Access Reset State

0x00 SDRAMC Mode Register SDRAMC_MR Read/Write 0x00000000

0x04 SDRAMC Refresh Timer Register SDRAMC_TR Read/Write 0x00000000

0x08 SDRAMC Configuration Register SDRAMC_CR Read/Write 0x852372C0

0x0C SDRAMC High Speed Register SDRAMC_HSR Read/Write 0x00

0x10 SDRAMC Low Power Register SDRAMC_LPR Read/Write 0x0

0x14 SDRAMC Interrupt Enable Register SDRAMC_IER Write-only –

0x18 SDRAMC Interrupt Disable Register SDRAMC_IDR Write-only –

0x1C SDRAMC Interrupt Mask Register SDRAMC_IMR Read-only 0x0

0x20 SDRAMC Interrupt Status Register SDRAMC_ISR Read-only 0x0

0x24 SDRAMC Memory Device Register SDRAMC_MDR Read 0x0

0x28 - 0xFC Reserved − − −
185
8549A–CAP–10/08

22.7.1 SDRAMC Mode Register
Register Name: SDRAMC_MR

Access Type: Read/Write

Reset Value: 0x00000000

• MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – MODE

Table 22-9.

MODE Description

0 0 0 Normal mode. Any access to the SDRAM is decoded normally.

0 0 1
The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the
cycle.

0 1 0
The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed
regardless of the cycle.

0 1 1

The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. The address offset with respect to the SDRAM device base address is used to
program the Mode Register. For instance, when this mode is activated, an access to the “SDRAM_Base +
offset” address generates a “Load Mode Register” command with the value “offset” written to the SDRAM
device Mode Register.

1 0 0
The SDRAM Controller issues an “Auto-Refresh” Command when the SDRAM device is accessed
regardless of the cycle. Previously, an “All Banks Precharge” command must be issued.

1 0 1

The SDRAM Controller issues an extended load mode register command when the SDRAM device is
accessed regardless of the cycle. The address offset with respect to the SDRAM device base address is
used to program the Mode Register. For instance, when this mode is activated, an access to the
“SDRAM_Base + offset” address generates an “Extended Load Mode Register” command with the value
“offset” written to the SDRAM device Mode Register.

1 1 0 Deep power-down mode. Enters deep power-down mode.
186
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
22.7.2 SDRAMC Refresh Timer Register
Register Name: SDRAMC_TR

Access Type: Read/Write

Reset Value: 0x00000000

• COUNT: SDRAMC Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 μs per row is a typical value for a burst of length one.

To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is
issued and no refresh of the SDRAM device is carried out.

22.7.3 SDRAMC Configuration Register
Register Name: SDRAMC_CR

Access Type: Read/Write

Reset Value: 0x852372C0

• NC: Number of Column Bits

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – COUNT

7 6 5 4 3 2 1 0
COUNT

31 30 29 28 27 26 25 24
TXSR TRAS

23 22 21 20 19 18 17 16
TRCD TRP

15 14 13 12 11 10 9 8
TRC TWR

7 6 5 4 3 2 1 0
DBW CAS NB NR NC
187
8549A–CAP–10/08

Reset value is 8 column bits.

• NR: Number of Row Bits
Reset value is 11 row bits.

• NB: Number of Banks
Reset value is two banks.

• CAS: CAS Latency
Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles are managed. In any case, another value must be
programmed.

• DBW: Data Bus Width
Reset value is 16 bits

0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

• TWR: Write Recovery Delay
Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.

NC Column Bits

0 0 8

0 1 9

1 0 10

1 1 11

NR Row Bits

0 0 11

0 1 12

1 0 13

1 1 Reserved

NB Number of Banks

0 2

1 4

CAS CAS Latency (Cycles)

0 0 Reserved

0 1 1

1 0 2

1 1 3
188
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• TRC: Row Cycle Delay
Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

• TRP: Row Precharge Delay
Reset value is three cycles.

This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 0 and 15.

• TRCD: Row to Column Delay
Reset value is two cycles.

This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 0 and 15.

• TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 0 and 15.

• TXSR: Exit Self Refresh to Active Delay
Reset value is eight cycles.

This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

22.7.4 SDRAMC High Speed Register
Register Name: SDRAMC_HSR

Access Type: Read/Write

• DA: Decode Cycle Enable
A decode cycle can be added on the addresses as soon as a non-sequential access is performed on the AHB bus.

The addition of the decode cycle allows the SDRAMC to gain time to access the SDRAM memory.

0: Decode cycle is disabled.

1: Decode cycle is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – DA
189
8549A–CAP–10/08

22.7.5 SDRAMC Low Power Register
Register Name: SDRAMC_LPR

Access Type: Read/Write

Reset Value: 0x0

• LPCB: Low-power Configuration Bits

• PASR: Partial Array Self-refresh (only for low-power SDRAM)
PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks
of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set
according to the SDRAM device specification.

• TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM)
TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode
depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device
specification.

• DS: Drive Strength (only for low-power SDRAM)
DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parame-
ter must be set according to the SDRAM device specification.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – TIMEOUT DS TCSR

7 6 5 4 3 2 1 0

– PASR – – LPCB

00
Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued
to the SDRAM device.

01
The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is
deactivated and the SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when
accessed and enters it after the access.

10
The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the
SDCKE signal is set to low. The SDRAM device leaves the Power-down Mode when accessed and
enters it after the access.

11
The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is
unique to low-power SDRAM.
190
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• TIMEOUT: Time to define when low-power mode is enabled

22.7.6 SDRAMC Interrupt Enable Register
Register Name: SDRAMC_IER

Access Type: Write-only

• RES: Refresh Error Status
0: No effect.

1: Enables the refresh error interrupt.

22.7.7 SDRAMC Interrupt Disable Register
Register Name: SDRAMC_IDR

Access Type: Write-only

00 The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.

01
The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last
transfer.

10
The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last
transfer.

11 Reserved.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RES

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RES
191
8549A–CAP–10/08

• RES: Refresh Error Status
0: No effect.

1: Disables the refresh error interrupt.

22.7.8 SDRAMC Interrupt Mask Register
Register Name: SDRAMC_IMR

Access Type: Read-only

• RES: Refresh Error Status
0: The refresh error interrupt is disabled.

1: The refresh error interrupt is enabled.

22.7.9 SDRAMC Interrupt Status Register
Register Name: SDRAMC_ISR

Access Type: Read-only

• RES: Refresh Error Status
0: No refresh error has been detected since the register was last read.

1: A refresh error has been detected since the register was last read.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RES

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RES
192
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
22.7.10 SDRAMC Memory Device Register
Register Name: SDRAMC_MDR

Access Type: Read/Write

• MD: Memory Device Type

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – MD

00 SDRAM

01 Low-power SDRAM

10 Reserved

11 Reserved.
193
8549A–CAP–10/08

194
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
23. Peripheral DMA Controller (PDC)

23.1 Description
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the
on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by
the AHB to ABP bridge.

The PDC contains 22 channels. The full-duplex peripherals feature 19 mono directional chan-
nels used in pairs (transmit only or receive only) except the ADC Controller uses only one RX
channel. The half-duplex peripherals feature 3 bi-directional channels.

The user interface of each PDC channel is integrated into the user interface of the peripheral it
serves. The user interface of mono directional channels (receive only or transmit only), contains
two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current trans-
fer and one set (pointer, counter) for next transfer. The bi-directional channel user interface
contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is
used by current transmit, next transmit, current receive and next receive.

Using the PDC removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which
improves microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and
receive signals. When the programmed data is transferred, an end of transfer interrupt is gener-
ated by the peripheral itself.
195
8549A–CAP–10/08

23.2 Block Diagram

Figure 23-1. Block Diagram

23.3 Functional Description

23.3.1 Configuration
The PDC channel user interface enables the user to configure and control data transfers for
each channel. The user interface of each PDC channel is integrated into the associated periph-
eral user interface.

The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit
pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR,
TNCR). However, the transmit and receive parts of each type are programmed differently: the

PDCFULL DUPLEX
PERIPHERAL

THR

RHR

PDC Channel A

PDC Channel B

Control

Status & Control
Control

PDC Channel C

HALF DUPLEX
PERIPHERAL

THR

Status & Control

RECEIVE or TRANSMIT
PERIPHERAL

RHR or THR

Control

Control

RHR

PDC Channel D

Status & Control
196
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
transmit and receive parts of a full duplex peripheral can be programmed at the same time,
whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a
time.

32-bit pointers define the access location in memory for current and next transfer, whether it is
for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers.
It is possible, at any moment, to read the number of transfers left for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for
each channel. The status for each channel is located in the associated peripheral status register.
Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in
the peripheral’s Transfer Control Register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These
flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE).
Refer to Section 23.3.3 and to the associated peripheral user interface.

23.3.2 Memory Pointers
Each full duplex peripheral is connected to the PDC by a receive channel and a transmit chan-
nel. Both channels have 32-bit memory pointers that point respectively to a receive area and to
a transmit area in on- and/or off-chip memory.

Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel
has two 32-bit memory pointers, one for current transfer and the other for next transfer. These
pointers point to transmit or receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
respectively by 1, 2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues
operating using the new address.

23.3.3 Transfer Counters
Each channel has two 16-bit counters, one for current transfer and the other one for next trans-
fer. These counters define the size of data to be transferred by the channel. The current transfer
counter is decremented first as the data addressed by current memory pointer starts to be trans-
ferred. When the current transfer counter reaches zero, the channel checks its next transfer
counter. If the value of next counter is zero, the channel stops transferring data and sets the
appropriate flag. But if the next counter value is greater then zero, the values of the next
pointer/next counter are copied into the current pointer/current counter and the channel resumes
the transfer whereas next pointer/next counter get zero/zero as values. At the end of this trans-
fer the PDC channel sets the appropriate flags in the Peripheral Status Register.

The following list gives an overview of how status register flags behave depending on the coun-
ters’ values:

• ENDRX flag is set when the PERIPH_RCR register reaches zero.

• RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

• ENDTX flag is set when the PERIPH_TCR register reaches zero.

• TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the Peripheral Status Register.
197
8549A–CAP–10/08

23.3.4 Data Transfers
The serial peripheral triggers its associated PDC channels’ transfers using transmit enable
(TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the periph-
eral’s user interface.

When the peripheral receives an external data, it sends a Receive Ready signal to its PDC
receive channel which then requests access to the Matrix. When access is granted, the PDC
receive channel starts reading the peripheral Receive Holding Register (RHR). The read data
are stored in an internal buffer and then written to memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit chan-
nel which then requests access to the Matrix. When access is granted, the PDC transmit
channel reads data from memory and puts them to Transmit Holding Register (THR) of its asso-
ciated peripheral. The same peripheral sends data according to its mechanism.

23.3.5 PDC Flags and Peripheral Status Register
Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the
PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status
Register.

Depending on the type of peripheral, half or full duplex, the flags belong to either one single
channel or two different channels.

23.3.5.1 Receive Transfer End
This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred
to memory.

It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.

23.3.5.2 Transmit Transfer End
This flag is set when PERIPH_TCR register reaches zero and the last data has been written into
peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

23.3.5.3 Receive Buffer Full
This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero
and the last data has been transferred to memory.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

23.3.5.4 Transmit Buffer Empty
This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero
and the last data has been written into peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
198
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
23.4 Peripheral DMA Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SPI, etc.)

Table 23-1. Memory Map

Offset Register Name Access Reset State

0x100 Receive Pointer Register PERIPH(1)_RPR Read/Write 0

0x104 Receive Counter Register PERIPH_RCR Read/Write 0

0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0

0x10C Transmit Counter Register PERIPH_TCR Read/Write 0

0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0

0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0

0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0

0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0

0x120 Transfer Control Register PERIPH_PTCR Write 0

0x124 Transfer Status Register PERIPH_PTSR Read 0
199
8549A–CAP–10/08

23.4.1 Receive Pointer Register
Register Name: PERIPH_RPR

Access Type: Read/Write

• RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

23.4.2 Receive Counter Register
Register Name: PERIPH_RCR

Access Type: Read/Write

• RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0 = Stops peripheral data transfer to the receiver

1 - 65535 = Starts peripheral data transfer if corresponding channel is active

31 30 29 28 27 26 25 24
RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8
RXPTR

7 6 5 4 3 2 1 0

RXPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

RXCTR

7 6 5 4 3 2 1 0

RXCTR
200
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
23.4.3 Transmit Pointer Register
Register Name: PERIPH_TPR

Access Type: Read/Write

• TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

23.4.4 Transmit Counter Register
Register Name: PERIPH_TCR

Access Type: Read/Write

• TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0 = Stops peripheral data transfer to the transmitter

1- 65535 = Starts peripheral data transfer if corresponding channel is active

31 30 29 28 27 26 25 24
TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8
TXPTR

7 6 5 4 3 2 1 0

TXPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

TXCTR

7 6 5 4 3 2 1 0

TXCTR
201
8549A–CAP–10/08

23.4.5 Receive Next Pointer Register
Register Name: PERIPH_RNPR

Access Type: Read/Write

• RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

23.4.6 Receive Next Counter Register
Register Name: PERIPH_RNCR

Access Type: Read/Write

• RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8
RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

RXNCTR

7 6 5 4 3 2 1 0

RXNCTR
202
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
23.4.7 Transmit Next Pointer Register
Register Name: PERIPH_TNPR

Access Type: Read/Write

• TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

23.4.8 Transmit Next Counter Register
Register Name: PERIPH_TNCR

Access Type: Read/Write

• TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8
TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

TXNCTR

7 6 5 4 3 2 1 0

TXNCTR
203
8549A–CAP–10/08

23.4.9 Transfer Control Register
Register Name: PERIPH_PTCR

Access Type: Write

• RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

• RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

• TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

• TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN
204
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
23.4.10 Transfer Status Register
Register Name: PERIPH_PTSR

Access Type: Read

• RXTEN: Receiver Transfer Enable
0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.

• TXTEN: Transmitter Transfer Enable
0 = PDC Transmitter channel requests are disabled.

1 = PDC Transmitter channel requests are enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN
205
8549A–CAP–10/08

206
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24. Advanced Power Management Controller

24.1 Clock Generator

24.1.1 Description
The Clock Generator is made up of 2 PLL, a Main Oscillator, as well as an RC Oscillator and a
32,768 Hz low-power Oscillator.

It provides the following clocks:

• SLCK, the Slow Clock, which is the only permanent clock within the system

• MAINCK is the output of the Main Oscillator

The Clock Generator User Interface is embedded within the Power Management Controller one
and is described in Section 24.2.10. However, the Clock Generator registers are named
CKGR_.

• PLLACK is the output of the Divider and PLL A block

• PLLBCK is the output of the Divider and PLL B block

24.1.2 Slow Clock Crystal Oscillator
The Clock Generator integrates a 32,768 Hz low-power oscillator. The XIN32 and XOUT32 pins
must be connected to a 32,768 Hz crystal. Two external capacitors must be wired as shown in
Figure 24-1.

Figure 24-1. Typical Slow Clock Crystal Oscillator Connection

24.1.3 Slow Clock RC Oscillator
The user has to take into account the possible drifts of the RC Oscillator. More details are given
in the section “DC Characteristics” of the product datasheet.

24.1.4 Main Oscillator
Figure 24-2 shows the Main Oscillator block diagram.

XIN32 XOUT32 G
32,768 Hz

Crystal
207
8549A–CAP–10/08

Figure 24-2. Main Oscillator Block Diagram

24.1.4.1 Main Oscillator Connections
The Clock Generator integrates a Main Oscillator that is designed for a 8 to 16 MHz fundamental
crystal. The typical crystal connection is illustrated in Figure 24-3. For further details on the elec-
trical characteristics of the Main Oscillator, see the section “DC Characteristics” of the product
datasheet.

Figure 24-3. Typical Crystal Connection

24.1.4.2 Main Oscillator Startup Time
The startup time of the Main Oscillator is given in the DC Characteristics section of the product
datasheet. The startup time depends on the crystal frequency and decreases when the fre-
quency rises.

24.1.4.3 Main Oscillator Control
To minimize the power required to start up the system, the main oscillator is disabled after reset
and slow clock is selected.

The software enables or disables the main oscillator so as to reduce power consumption by
clearing the MOSCEN bit in the Main Oscillator Register (CKGR_MOR).

XIN

XOUT

MOSCEN

Main
Oscillator
Counter

OSCOUNT

MOSCS

MAINCK
Main Clock

Main Clock
Frequency

Counter

MAINF

MAINRDY

SLCK
Slow Clock

Main
Oscillator

1K

XIN XOUT GND

CAP7 Microcontroller
208
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit
in PMC_SR is automatically cleared, indicating the main clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the main oscillator.

When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscil-
lator, the MOSCS bit in PMC_SR (Status Register) is cleared and the counter starts counting
down on the slow clock divided by 8 from the OSCOUNT value. Since the OSCOUNT value is
coded with 8 bits, the maximum startup time is about 62 ms.

When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Set-
ting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor.

24.1.4.4 Main Clock Frequency Counter
The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency
connected to the Main Oscillator. Generally, this value is known by the system designer; how-
ever, it is useful for the boot program to configure the device with the correct clock speed,
independently of the application.

The Main Clock frequency counter starts incrementing at the Main Clock speed after the next ris-
ing edge of the Slow Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS
bit is set. Then, at the 16th falling edge of Slow Clock, the MAINRDY bit in CKGR_MCFR (Main
Clock Frequency Register) is set and the counter stops counting. Its value can be read in the
MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during 16 periods of
Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can be
determined.

24.1.4.5 Main Oscillator Bypass
The user can input a clock on the device instead of connecting a crystal. In this case, the user
has to provide the external clock signal on the XIN pin. The input characteristics of the XIN pin
under these conditions are given in the product electrical characteristics section. The program-
mer has to be sure to set the OSCBYPASS bit to 1 and the MOSCEN bit to 0 in the Main OSC
register (CKGR_MOR) for the external clock to operate properly.

24.1.5 Divider and PLL Block
The PLL embeds an input divider to increase the accuracy of the resulting clock signals. How-
ever, the user must respect the PLL minimum input frequency when programming the divider.

Figure 24-4 shows the block diagram of the divider and PLL blocks.
209
8549A–CAP–10/08

Figure 24-4. Divider and PLL Block Diagram

24.1.5.1 PLL Filter
The PLLA requires connection to an external second-order filter through the PLLRCA pin. Figure
24-5 shows a schematic of this filter.

PLLB has its own internal filter which is tuned for optimum operation with a 12 MHz input clock
frequency and an output frequency of 96 MHz for generating the USB clock. Use of any other
frequency for the input clock or output setting for PLLB will likely result in increased jitter and
reduced quality of the PLLB output clock.

Figure 24-5. PLL Capacitors and Resistors

Values of R, C1 and C2 to be connected to the PLLRC pin must be calculated as a function of
the PLL input frequency, the PLL output frequency and the phase margin. A trade-off has to be
found between output signal overshoot and startup time.

Divider B

DIVB

PLL B

MULB

PLLRCA

DIVA

PLL A

Counter

PLLBCOUNT

LOCKB

PLL A
Counter

PLLACOUNT

LOCKA

MULA

OUTB

OUTA

SLCK

PLLACK

PLLBCK

Divider A

PLL B

MAINCK

GND

C1

C2

PLL
PLLRC

R

210
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.1.5.2 Divider and Phase Lock Loop Programming
The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the
output of the corresponding divider and the PLL output is a continuous signal at level 0. On
reset, each DIV field is set to 0, thus the corresponding PLL input clock is set to 0.

The PLL allows multiplication of the divider’s outputs. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the parameters DIV and MUL. The
factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0, the
corresponding PLL is disabled and its power consumption is saved. Re-enabling the PLL can be
performed by writing a value higher than 0 in the MUL field.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit (LOCKA or
LOCKB) in PMC_SR is automatically cleared. The values written in the PLLCOUNT field (PLLA-
COUNT or PLLBCOUNT) in CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), are loaded in the
PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it reaches 0.
At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the processor. The
user has to load the number of Slow Clock cycles required to cover the PLL transient time into
the PLLCOUNT field. The transient time depends on the PLL filter. The initial state of the PLL
and its target frequency can be calculated using a specific tool provided by Atmel.

For PLLB, the values of DIV and MUL should be set to produce an input clock frequency of
12MHz and an output clock frequency of 96MHz for optimal operation for USB support. Any
other settings will likely result in result in reduced quality of the PLLB output clock.
211
8549A–CAP–10/08

24.2 Power Management Controller (PMC)

24.2.1 Description
The Power Management Controller (PMC) optimizes power consumption by controlling all sys-
tem and user peripheral clocks. The PMC enables/disables the clock inputs to many of the
peripherals and the ARM Processor.

The Power Management Controller provides the following clocks:

• MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the AIC
and the Memory Controller.

• Processor Clock (PCK), switched off when entering processor in Idle Mode.

• Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI,
TWI, TC, MCI, etc.) and independently controllable. In order to reduce the number of clock
names in a product, the Peripheral Clocks are named MCK in the product datasheet.

• HClocks (HCKx), provided to the AHB high speed peripherals and independently
controllable.

• UHP Clock (UHPCK), required by USB Host Port operations.

• UDP Clock (UDPCK), required by USB Device Port operations.

• Programmable Clock Outputs can be selected from the clocks provided by the clock
generator and driven on the PCKx pins.

24.2.2 Master Clock Controller
The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals and the memory controller.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock
saves power consumption of the PLLs.

The Master Clock Controller is made up of a clock selector and a prescaler.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64. The PRES field in PMC_MCKR programs the prescaler.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.
212
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 24-6. Master Clock Controller

24.2.3 Processor Clock Controller
The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle
Mode. The Processor Clock can be disabled by writing the System Clock Disable Register
(PMC_SCDR). The status of this clock (at least for debug purposes) can be read in the System
Clock Status Register (PMC_SCSR).

The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Idle Mode is achieved by disabling the Processor Clock which
is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the prod-
uct. When the Processor Clock is disabled, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.

24.2.4 USB Clock Controller
The USB Source Clock is always generated from the PLL B output. If using USB, the user must
program the PLLB to generate a 96 MHz signal (with an accuracy of ± 0.25%) and then further
divide this clock by 2 to generate a 48 MHz clock by programming the appropriate value into the
USBDIV bits in CKGR_PLLBR (see Figure 24-7).

When the PLL B output is stable, i.e., the LOCKB is set:

• The USB host clock can be enabled by setting the UHP bit in PMC_SCER. To save power on
this peripheral when it is not used, the user can set the UHP bit in PMC_SCDR. The UHP bit
in PMC_SCSR gives the activity of this clock. A USB host port requires both the 12/48 MHz
signal and the Master Clock. The Master Clock may be controlled via the Master Clock
Controller.

• The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power
on this peripheral when it is not used, the user can set the UDP bit in PMC_SCDR. The UDP
bit in PMC_SCSR gives the activity of this clock. The USB device port require both the 48
MHz signal and the Master Clock. The Master Clock may be controlled via the Master Clock
Controller.

Figure 24-7. USB Clock Controller

SLCK

Master Clock
Prescaler

MCK

PRESCSS

MAINCK

PLLACK

PLLBCK
To the Processor
Clock Controller (PCK)

PMC_MCKR PMC_MCKR

USB
Source
Clock

UDP Clock (UDPCK)

UDP

USBDIV

Divider
/1,/2,/4

UHP Clock (UHPCK)

UHP
213
8549A–CAP–10/08

24.2.5 Peripheral Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by the way
of the Peripheral Clock Controller. The user can individually enable and disable the Master
Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Periph-
eral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be
read in the Peripheral Clock Status Register (PMC_PCSR).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and
PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number
corresponds to the interrupt source number assigned to the peripheral.

24.2.6 HClock Controller
The PMC facilitates control of the clocks of each specific AHB peripheral by means of the
HClock Controller. The user can individually enable and disable the Hclocks by writing into the
registers; Peripheral Clock Enable (PMC_PCER) and Peripheral Clock Disable (PMC_PCDR).
The status of HClock activity can be read in the Peripheral Clock Status Register (PMC_PCSR).

When an HClock is disabled, the clock is immediately stopped. When the HClock is re-enabled,
the peripheral resumes action where it left off. The HClocks are automatically disabled after a
reset.

4 HClocks can be controlled.

24.2.7 Programmable Clock Output Controller
The PMC controls 4 signals to be output on external pins PCKx. Each signal can be indepen-
dently programmed via the PMC_PCKx registers.

PCKx can be independently selected between the Slow clock, the PLL A output, the PLL B out-
put and the main clock by writing the CSS field in PMC_PCKx. Each output signal can also be
divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKx.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).

Moreover, like the PCK, a status bitin PMC_SR indicates that the Programmable Clock is actu-
ally what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.

24.2.8 Programming Sequence

1. Enabling the Main Oscillator:

The main oscillator is enabled by setting the MOSCEN field in the CKGR_MOR register. In
some cases it may be advantageous to define a start-up time. This can be achieved by writ-
ing a value in the OSCOUNT field in the CKGR_MOR register.
214
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Once this register has been correctly configured, the user must wait for MOSCS field in the
PMC_SR register to be set. This can be done either by polling the status register or by wait-
ing the interrupt line to be raised if the associated interrupt to MOSCS has been enabled in
the PMC_IER register.

Code Example:

write_register(CKGR_MOR,0x00000701)

Start Up Time = 8 * OSCOUNT / SLCK = 56 Slow Clock Cycles.

So, the main oscillator will be enabled (MOSCS bit set) after 56 Slow Clock Cycles.

2. Checking the Main Oscillator Frequency (Optional):

In some situations the user may need an accurate measure of the main oscillator frequency.
This measure can be accomplished via the CKGR_MCFR register.

Once the MAINRDY field is set in CKGR_MCFR register, the user may read the MAINF field
in CKGR_MCFR register. This provides the number of main clock cycles within sixteen slow
clock cycles.

3. Setting PLL A and divider A:

All parameters necessary to configure PLL A and divider A are located in the CKGR_PLLAR
register.

It is important to note that Bit 29 must always be set to 1 when programming the
CKGR_PLLAR register.

The DIVA field is used to control the divider A itself. The user can program a value between
0 and 255. Divider A output is divider A input divided by DIVA. By default, DIVA parameter is
set to 0 which means that divider A is turned off.

The OUTA field is used to select the PLL A output frequency range.

The MULA field is the PLL A multiplier factor. This parameter can be programmed between
0 and 2047. If MULA is set to 0, PLL A will be turned off. Otherwise PLL A output frequency
is PLL A input frequency multiplied by (MULA + 1).

The PLLACOUNT field specifies the number of slow clock cycles before LOCKA bit is set in
the PMC_SR register after CKGR_PLLAR register has been written.

Once CKGR_PLLAR register has been written, the user is obliged to wait for the LOCKA bit
to be set in the PMC_SR register. This can be done either by polling the status register or by
waiting the interrupt line to be raised if the associated interrupt to LOCKA has been enabled
in the PMC_IER register.

All parameters in CKGR_PLLAR can be programmed in a single write operation. If at some
stage one of the following parameters, SRCA, MULA, DIVA is modified,

LOCKA bit will go low to indicate that PLL A is not ready yet. When PLL A is locked, LOCKA
will be set again. User has to wait for LOCKA bit to be set before using the PLL A output
clock.

Code Example:

write_register(CKGR_PLLAR,0x20030605)
215
8549A–CAP–10/08

PLL A and divider A are enabled. PLL A input clock is main clock divided by 5. PLL An out-
put clock is PLL A input clock multiplied by 4. Once CKGR_PLLAR has been written,
LOCKA bit will be set after six slow clock cycles.

4. Setting PLL B and divider B:

All parameters needed to configure PLL B and divider B are located in the CKGR_PLLBR
register.

The DIVB field is used to control divider B itself. A value between 0 and 255 can be pro-
grammed. Divider B output is divider B input divided by DIVB parameter. By default DIVB
parameter is set to 0 which means that divider B is turned off.

The OUTB field is used to select the PLL B output frequency range.

The MULB field is the PLL B multiplier factor. This parameter can be programmed between
0 and 2047. If MULB is set to 0, PLL B will be turned off, otherwise the PLL B output fre-
quency is PLL B input frequency multiplied by (MULB + 1).

As stated previously in this chapter and due to the tuning of the internal PLLB filter for USB
operation, DIVB and MULB should be programmed to generate a 96 MHz PLL clock for opti-
mum performance. Other settings are likely to produce an output clock with reduced quality.

The PLLBCOUNT field specifies the number of slow clock cycles before LOCKB bit is set in
the PMC_SR register after CKGR_PLLBR register has been written.

Once the PMC_PLLB register has been written, the user must wait for the LOCKB bit to be
set in the PMC_SR register. This can be done either by polling the status register or by wait-
ing the interrupt line to be raised if the associated interrupt to LOCKB has been enabled in
the PMC_IER register. All parameters in CKGR_PLLBR can be programmed in a single
write operation. If at some stage one of the following parameters, MULB, DIVB is modified,
LOCKB bit will go low to indicate that PLL B is not ready yet. When PLL B is locked, LOCKB
will be set again. The user is constrained to wait for LOCKB bit to be set before using the
PLL A output clock.

The USBDIV field is used to control the additional divider by 1, 2 or 4, which generates the
USB clock(s). As mentioned in an earlier paragraph, should be normally set to divide the 96
MHz PLLB output clock by 2 and thereby generate the 48 MHz USB clocks.

Code Example:

write_register(CKGR_PLLBR,0x00040805)

If PLL B and divider B are enabled, the PLL B input clock is the main clock. PLL B output
clock is PLL B input clock multiplied by 5. Once CKGR_PLLBR has been written, LOCKB bit
will be set after eight slow clock cycles.
216
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
5. Selection of Master Clock and Processor Clock

The Master Clock and the Processor Clock are configurable via the PMC_MCKR register.

The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is slow clock.

The PRES field is used to control the Master Clock prescaler. The user can choose between
different values (1, 2, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by
PRES parameter. By default, PRES parameter is set to 1 which means that master clock is
equal to slow clock.

Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.

The PMC_MCKR register must not be programmed in a single write operation. The pre-
ferred programming sequence for the PMC_MCKR register is as follows:

• If a new value for CSS field corresponds to PLL Clock,

– Program the PRES field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

– Program the CSS field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

• If a new value for CSS field corresponds to Main Clock or Slow Clock,

– Program the CSS field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

– Program the PRES field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.
The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), the MCKRDY flag will go low while PLL is
unlocked. Once PLL is locked again, LOCK (LOCKA or LOCKB) goes high and MCKRDY is set.
While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock. While
PLLB is unlocked, the Master Clock selection is automatically changed to Main Clock. For further
information, see Section 24.2.9.2. “Clock Switching Waveforms” on page 221.

Code Example:

write_register(PMC_MCKR,0x00000001)

wait (MCKRDY=1)

write_register(PMC_MCKR,0x00000011)

wait (MCKRDY=1)

The Master Clock is main clock divided by 16.

The Processor Clock is the Master Clock.
217
8549A–CAP–10/08

6. Selection of Programmable clocks

Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.

Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. Depending on the system used, 4 Programmable clocks can be enabled or dis-
abled. The PMC_SCSR provides a clear indication as to which Programmable clock is
enabled. By default all Programmable clocks are disabled.

PMC_PCKx registers are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Four clock options
are available: main clock, slow clock, PLLACK, PLLBCK. By default, the clock source
selected is slow clock.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 1 which means
that master clock is equal to slow clock.

Once the PMC_PCKx register has been programmed, The corresponding Programmable
clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in
the PMC_SR register. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the
PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable
clock must be disabled first. The parameters can then be modified. Once this has been
done, the user must re-enable the Programmable clock and wait for the PCKRDYx bit to be
set.

Code Example:

write_register(PMC_PCK0,0x00000015)

Programmable clock 0 is main clock divided by 32.

7. Enabling Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled via registers PMC_PCER and PMC_PCDR.

Depending on the system used, 24 peripheral clocks can be enabled or disabled. The
PMC_PCSR provides a clear view as to which peripheral clock is enabled.

Note: Each enabled peripheral clock corresponds to Master Clock.

Code Examples:

write_register(PMC_PCER,0x00000110)
218
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Peripheral clocks 4 and 8 are enabled.

write_register(PMC_PCDR,0x00000010)

Peripheral clock 4 is disabled.

8. Enabling HClocks

Once all of the previous steps have been completed, the HClocks can be enabled and/or
disabled via registers; PMC_PCER and PMC_PCDR.

Depending on the system used, 4 HClocks can be enabled or disabled.

The PMC_PCSR register indicates which HClock is enabled.

Note: Each enabled HClock corresponds to Master Clock.

Code Examples:

write_register(PMC_PCER,0x24000000)

HClocks 0 and 3 are enabled.
219
8549A–CAP–10/08

24.2.9 Clock Switching Details

24.2.9.1 Master Clock Switching Timings
Table 24-1 and Table 24-2 give the worst case timings required for the Master Clock to switch
from one selected clock to another one. This is in the event that the prescaler is de-activated.
When the prescaler is activated, an additional time of 64 clock cycles of the new selected clock
has to be added.

Notes: 1. PLL designates either the PLL A or the PLL B Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

Table 24-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock

To

Main Clock –
4 x SLCK +

2.5 x Main Clock

3 x PLL Clock +
4 x SLCK +

1 x Main Clock

SLCK
0.5 x Main Clock +

4.5 x SLCK
–

3 x PLL Clock +
5 x SLCK

PLL Clock

0.5 x Main Clock +
4 x SLCK +

PLLCOUNT x SLCK +
2.5 x PLLx Clock

2.5 x PLL Clock +
5 x SLCK +

PLLCOUNT x SLCK

2.5 x PLL Clock +
4 x SLCK +

PLLCOUNT x SLCK

Table 24-2. Clock Switching Timings Between Two PLLs (Worst Case)

From PLLA Clock PLLB Clock

To

PLLA Clock
2.5 x PLLA Clock +

4 x SLCK +
PLLACOUNT x SLCK

3 x PLLA Clock +
4 x SLCK +

1.5 x PLLA Clock

PLLB Clock
3 x PLLB Clock +

4 x SLCK +
1.5 x PLLB Clock

2.5 x PLLB Clock +
4 x SLCK +

PLLBCOUNT x SLCK
220
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.9.2 Clock Switching Waveforms

Figure 24-8. Switch Master Clock from Slow Clock to PLL Clock

Figure 24-9. Switch Master Clock from Main Clock to Slow Clock

Slow Clock

LOCK

MCKRDY

Master Clock

Write PMC_MCKR

PLL Clock

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR
221
8549A–CAP–10/08

Figure 24-10. Change PLLA Programming

Figure 24-11. Change PLLB Programming

Slow Clock

Slow Clock

PLLA Clock

LOCK

MCKRDY

Master Clock

Write CKGR_PLLAR

Main Clock

Main Clock

PLLB Clock

LOCK

MCKRDY

Master Clock

Write CKGR_PLLBR
222
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 24-12. Programmable Clock Output Programming

PLL Clock

PCKRDY

PCKx Output

Write PMC_PCKx

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLL Clock is selected
223
8549A–CAP–10/08

24.2.10 Power Management Controller (PMC) User Interface

Table 24-3. Register Mapping

Offset Register Name Access Reset Value

0x0000 System Clock Enable Register PMC_SCER Write-only –

0x0004 System Clock Disable Register PMC_SCDR Write-only –

0x0008 System Clock Status Register PMC _SCSR Read-only 0x01

0x000C Reserved – – –

0x0010 Peripheral Clock Enable Register PMC _PCER Write-only –

0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only –

0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0

0x001C Reserved – – –

0x0020 Main Oscillator Register CKGR_MOR Read/Write 0x0

0x0024 Main Clock Frequency Register CKGR_MCFR Read-only 0x0

0x0028 PLL A Register CKGR_PLLAR ReadWrite 0x3F00

0x002C PLL B Register CKGR_PLLBR ReadWrite 0x3F00

0x0030 Master Clock Register PMC_MCKR Read/Write 0x0

0x0038 Reserved – – –

0x003C Reserved – – –

0x0040 Programmable Clock 0 Register PMC_PCK0 Read/Write 0x0

0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0

...

0x0060 Interrupt Enable Register PMC_IER Write-only --

0x0064 Interrupt Disable Register PMC_IDR Write-only --

0x0068 Status Register PMC_SR Read-only 0x08

0x006C Interrupt Mask Register PMC_IMR Read-only 0x0

0x0070 - 0x007C Reserved – – –
224
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.1 PMC System Clock Enable Register
Register Name: PMC_SCER

Access Type: Write-only

• UHP: USB Host Port Clock Enable

0 = No effect.

1 = Enables the 12 and 48 MHz clock of the USB Host Port.

• UDP: USB Device Port Clock Enable
0 = No effect.

1 = Enables the 48 MHz clock of the USB Device Port.

• PCKx: Programmable Clock x Output Enable
0 = No effect.

1 = Enables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

UDP UHP – – – – - PCK
225
8549A–CAP–10/08

24.2.10.2 PMC System Clock Disable Register
Register Name: PMC_SCDR

Access Type: Write-only

• PCK: Processor Clock Disable

0 = No effect.

1 = Disables the Processor clock. This is used to enter the processor in Idle Mode.

• UHP: USB Host Port Clock Disable

0 = No effect.

1 = Disables the 12 and 48 MHz clock of the USB Host Port.

• UDP: USB Device Port Clock Disable
0 = No effect.

1 = Disables the 48 MHz clock of the USB Device Port.

• PCKx: Programmable Clock x Output Disable
0 = No effect.

1 = Disables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

UDP UHP – – – – - PCK
226
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.3 PMC System Clock Status Register
Register Name: PMC_SCSR

Access Type: Read-only

• PCK: Processor Clock Status

0 = The Processor clock is disabled.

1 = The Processor clock is enabled.

• UHP: USB Host Port Clock Status

0 = The 12 and 48 MHz clock (UHPCK) of the USB Host Port is disabled.

1 = The 12 and 48 MHz clock (UHPCK) of the USB Host Port is enabled.

• UDP: USB Device Port Clock Status
0 = The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1 = The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

• PCKx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

UDP UHP – – – – - PCK
227
8549A–CAP–10/08

24.2.10.4 PMC Peripheral Clock Enable Register
Register Name: PMC_PCER

Access Type: Write-only

• PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

Note: PID2 to PID29 refer to identifiers as defined in Section 10.2 Peripheral Identifiers.

Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

• HCKx: HClock x Output Enable

0 = No effect.

1 = Enables the corresponding HClock output.

Note: HCK0 - HCK3 correspond to PID26 - PID29 and therefore control the AHB clocks for the MP Block Master A, B, C, and D
respectively as defined in Section 10.2 Peripheral Identifiers.

31 30 29 28 27 26 25 24

- - HCK3(PID29) HCK2(PID28) HCK1(PID27) HCK0(PID26) PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 - -
228
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.5 PMC Peripheral Clock Disable Register
Register Name: PMC_PCDR

Access Type: Write-only

• PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: PID2 to PID29 refer to identifiers as defined in Section 10.2 Peripheral Identifiers.

• HCKx: Hclock x Output Disable

0 = No effect.

1 = Disables the corresponding HClock output.

Note: HCK0 - HCK3 correspond to PID26 - PID29 and therefore control the AHB clocks for the MP Block Master A, B, C, and D
respectively as defined in Section 10.2 Peripheral Identifiers.

31 30 29 28 27 26 25 24

- - HCK3(PID29) HCK2(PID28) HCK1(PID27) HCK0(PID26) PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 - -
229
8549A–CAP–10/08

24.2.10.6 PMC Peripheral Clock Status Register
Register Name: PMC_PCSR

Access Type: Read-only

• PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: PID2 to PID29 refer to identifiers as defined in Section 10.2 Peripheral Identifiers.

• HCKx: HClock Output x Status

0 = The corresponding HClock output is disabled.

1 = The corresponding HClock output is enabled.

Note: HCK0 - HCK3 correspond to PID26 - PID29 and therefore control the AHB clocks for the MP Block Master A, B, C, and D
respectively as defined in Section 10.2 Peripheral Identifiers.

31 30 29 28 27 26 25 24

- - HCK3(PID29) HCK2(PID28) HCK1(PID27) HCK0(PID26) PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –
230
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.7 PMC Clock Generator Main Oscillator Register
Register Name: CKGR_MOR

Access Type: Read/Write

• MOSCEN: Main Oscillator Enable

A crystal must be connected between XIN and XOUT.

0 = The Main Oscillator is disabled.

1 = The Main Oscillator is enabled. OSCBYPASS must be set to 0.

When MOSCEN is set, the MOSCS flag is set once the Main Oscillator startup time is achieved.

• OSCBYPASS: Oscillator Bypass

0 = No effect.

1 = The Main Oscillator is bypassed. MOSCEN must be set to 0. An external clock must be connected on XIN.

When OSCBYPASS is set, the MOSCS flag in PMC_SR is automatically set.

Clearing MOSCEN and OSCBYPASS bits allows resetting the MOSCS flag.

• OSCOUNT: Main Oscillator Start-up Time

Specifies the number of Slow Clock cycles multiplied by 8 for the Main Oscillator start-up time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

OSCOUNT

7 6 5 4 3 2 1 0

– – – – – – OSCBYPASS MOSCEN
231
8549A–CAP–10/08

24.2.10.8 PMC Clock Generator Main Clock Frequency Register
Register Name: CKGR_MCFR

Access Type: Read-only

• MAINF: Main Clock Frequency

Gives the number of Main Clock cycles within 16 Slow Clock periods.

• MAINRDY: Main Clock Ready

0 = MAINF value is not valid or the Main Oscillator is disabled.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – MAINRDY

15 14 13 12 11 10 9 8

MAINF

7 6 5 4 3 2 1 0

MAINF
232
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.9 PMC Clock Generator PLL A Register
Register Name: CKGR_PLLAR

Access Type: Read/Write

Possible limitations on PLL A input frequencies and multiplier factors should be checked before using the PMC.

Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR register.

• DIVA: Divider A

• PLLACOUNT: PLL A Counter

Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

• OUTA: PLL A Clock Frequency Range

To optimize clock performance, this field must be programmed as specified in “PLL Characteristics” in the Electrical Char-
acteristics section of the product datasheet.

• MULA: PLL A Multiplier

0 = The PLL A is deactivated.

1 up to 2047 = The PLL A Clock frequency is the PLL A input frequency multiplied by MULA + 1.

31 30 29 28 27 26 25 24
– – 1 – – MULA

23 22 21 20 19 18 17 16

MULA

15 14 13 12 11 10 9 8

OUTA PLLACOUNT

7 6 5 4 3 2 1 0

DIVA

DIVA Divider Selected

0 Divider output is 0

1 Divider is bypassed

2 - 255 Divider output is the Main Clock divided by DIVA.
233
8549A–CAP–10/08

24.2.10.10 PMC Clock Generator PLL B Register
Register Name: CKGR_PLLBR

Access Type: Read/Write

Possible limitations on PLL B input frequencies and multiplier factors should be checked before using the PMC.

• DIVB: Divider B

• PLLBCOUNT: PLL B Counter

Specifies the number of slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

• OUTB: PLLB Clock Frequency Range

To optimize clock performance, this field must be programmed as specified in “PLL Characteristics” in the Electrical Char-
acteristics section of the product datasheet.

• MULB: PLL B Multiplier

0 = The PLL B is deactivated.

1 up to 2047 = The PLL B Clock frequency is the PLL B input frequency multiplied by MULB + 1.

• USBDIV: Divider for USB Clock

31 30 29 28 27 26 25 24
– – USBDIV – MULB

23 22 21 20 19 18 17 16

MULB

15 14 13 12 11 10 9 8

OUTB PLLBCOUNT

7 6 5 4 3 2 1 0

DIVB

DIVB Divider Selected

0 Divider output is 0

1 Divider is bypassed

2 - 255 Divider output is the selected clock divided by DIVB.

USBDIV Divider for USB Clock(s)

0 0 Divider output is PLL B clock output.

0 1 Divider output is PLL B clock output divided by 2.

1 0 Divider output is PLL B clock output divided by 4.

1 1 Reserved.
234
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.11 PMC Master Clock Register
Register Name: PMC_MCKR

Access Type: Read/Write

• CSS: Master Clock Selection

• PRES: Processor Clock Prescaler

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – -

7 6 5 4 3 2 1 0

– – – PRES CSS

CSS Clock Source Selection

0 0 Slow Clock is selected

0 1 Main Clock is selected

1 0 PLL A Clock is selected

1 1 PLL B Clock is selected

PRES Processor Clock

0 0 0 Selected clock

0 0 1 Selected clock divided by 2

0 1 0 Selected clock divided by 4

0 1 1 Selected clock divided by 8

1 0 0 Selected clock divided by 16

1 0 1 Selected clock divided by 32

1 1 0 Selected clock divided by 64

1 1 1 Reserved
235
8549A–CAP–10/08

24.2.10.12 PMC Programmable Clock Register
Register Name: PMC_PCKx

Access Type: Read/Write

• CSS: Master Clock Selection

• PRES: Programmable Clock Prescaler

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – PRES CSS

CSS Clock Source Selection

0 0 Slow Clock is selected

0 1 Main Clock is selected

1 0 PLL A Clock is selected

1 1 PLL B Clock is selected

PRES Programmable Clock

0 0 0 Selected clock

0 0 1 Selected clock divided by 2

0 1 0 Selected clock divided by 4

0 1 1 Selected clock divided by 8

1 0 0 Selected clock divided by 16

1 0 1 Selected clock divided by 32

1 1 0 Selected clock divided by 64

1 1 1 Reserved
236
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.13 PMC Interrupt Enable Register
Register Name: PMC_IER

Access Type: Write-only

• MOSCS: Main Oscillator Status Interrupt Enable

• LOCKA: PLL A Lock Interrupt Enable

• LOCKB: PLL B Lock Interrupt Enable

• MCKRDY: Master Clock Ready Interrupt Enable

• PCKRDYx: Programmable Clock Ready x Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

- - - - PCKRDY3 PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– - - - MCKRDY LOCKB LOCKA MOSCS
237
8549A–CAP–10/08

24.2.10.14 PMC Interrupt Disable Register
Register Name: PMC_IDR

Access Type: Write-only

• MOSCS: Main Oscillator Status Interrupt Disable

• LOCKA: PLL A Lock Interrupt Disable

• LOCKB: PLL B Lock Interrupt Disable

• MCKRDY: Master Clock Ready Interrupt Disable

• PCKRDYx: Programmable Clock Ready x Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

- - - - PCKRDY3 PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

– - - - MCKRDY LOCKB LOCKA MOSCS
238
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
24.2.10.15 PMC Status Register
Register Name: PMC_SR

Access Type: Read-only

• MOSCS: MOSCS Flag Status
0 = Main oscillator is not stabilized.

1 = Main oscillator is stabilized.

• LOCKA: PLL A Lock Status
0 = PLL A is not locked

1 = PLL A is locked.

• LOCKB: PLL B Lock Status
0 = PLL B is not locked.

1 = PLL B is locked.

• MCKRDY: Master Clock Status
0 = Master Clock is not ready.

1 = Master Clock is ready.

• OSC_SEL: Slow Clock Oscillator Selection
0 = Internal slow clock RC oscillator.

1 = External slow clock 32 kHz oscillator.

• PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.

1 = Programmable Clock x is ready.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

- - - - PCKRDY3 PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
OSC_SEL - - - MCKRDY LOCKB LOCKA MOSCS
239
8549A–CAP–10/08

24.2.10.16 PMC Interrupt Mask Register
Register Name: PMC_IMR

Access Type: Read-only

• MOSCS: Main Oscillator Status Interrupt Mask

• LOCKA: PLL A Lock Interrupt Mask

• LOCKB: PLL B Lock Interrupt Mask

• MCKRDY: Master Clock Ready Interrupt Mask

• PCKRDYx: Programmable Clock Ready x Interrupt Mask
0 = The corresponding interrupt is enabled.

1 = The corresponding interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

- - - - PCKRDY3 PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

– - - - MCKRDY LOCKB LOCKA MOSCS
240
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25. Advanced Interrupt Controller (AIC)

25.1 Description
The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to sub-
stantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external inter-
rupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

The fast forcing feature redirects any internal or external interrupt source to provide a fast inter-
rupt rather than a normal interrupt.
241
8549A–CAP–10/08

25.2 Block Diagram

Figure 25-1. Block Diagram

25.2.1 Application Block Diagram

Figure 25-2. Description of the Application Block

25.2.2 AIC Detailed Block Diagram

Figure 25-3. AIC Detailed Block Diagram

AIC

APB

ARM
Processor

FIQ

IRQ0-IRQn

Embedded
PeripheralEE

PeripheralEmbedded
Peripheral

Embedded

Up to
Thirty-two
Sources

nFIQ

nIRQ

Advanced Interrupt Controller

Embedded Peripherals
External Peripherals
(External Interrupts)

Standalone
Applications RTOS Drivers

Hard Real Time Tasks

OS-based Applications

OS Drivers

General OS Interrupt Handler

FIQ

PIO
Controller

Advanced Interrupt Controller

IRQ0-IRQn
PIOIRQ

Embedded
Peripherals

External
Source
Input
Stage

Internal
Source
Input
Stage

Fast
Forcing

Interrupt
Priority

Controller

Fast
Interrupt

Controller

ARM
Processor

nFIQ

nIRQ

Power
Management

Controller

Wake UpUser Interface

APB

Processor
Clock
242
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.3 I/O Line Description

25.4 Product Dependencies

25.4.1 I/O Lines
The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

25.4.2 Power Management
The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

25.4.3 Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock, the
Power Management Controller and the Memory Controller. When a system interrupt occurs, the
service routine must first distinguish the cause of the interrupt. This is performed by reading suc-
cessively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to sim-
plify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.

Table 25-1. I/O Line Description

Pin Name Pin Description Type

FIQ Fast Interrupt Input

IRQ0 - IRQn Interrupt 0 - Interrupt n Input
243
8549A–CAP–10/08

25.5 Functional Description

25.5.1 Interrupt Source Control

25.5.1.1 Interrupt Source Mode
The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.

25.5.1.2 Interrupt Source Enabling
Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.

25.5.1.3 Interrupt Clearing and Setting
All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See “Priority Controller” on page 247.) The automatic clear reduces
the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note
that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature
enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast Forcing” on
page 251.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

25.5.1.4 Interrupt Status
For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.

The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on page
247) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the
processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.
244
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.5.1.5 Internal Interrupt Source Input Stage

Figure 25-4. Internal Interrupt Source Input Stage

25.5.1.6 External Interrupt Source Input Stage

Figure 25-5. External Interrupt Source Input Stage

Edge
Detector

ClearSet

Source i
AIC_IPR

AIC_IMR

AIC_IECR

AIC_IDCR

AIC_ISCR

AIC_ICCR

Fast Interrupt Controller
or
Priority Controller

FF

Level/
Edge

AIC_SMRI

(SRCTYPE)

Edge
Detector

ClearSet

Pos./Neg.

AIC_ISCR

AIC_ICCR

Source i

FF

Level/
Edge

High/Low
AIC_SMRi

SRCTYPE

AIC_IPR

AIC_IMR

AIC_IECR

AIC_IDCR

Fast Interrupt Controller
or
Priority Controller
245
8549A–CAP–10/08

25.5.2 Interrupt Latencies
Global interrupt latencies depend on several parameters, including:

• The time the software masks the interrupts.

• Occurrence, either at the processor level or at the AIC level.

• The execution time of the instruction in progress when the interrupt occurs.

• The treatment of higher priority interrupts and the resynchronization of the hardware signals.

This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the pro-
cessor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

25.5.2.1 External Interrupt Edge Triggered Source

Figure 25-6. External Interrupt Edge Triggered Source

25.5.2.2 External Interrupt Level Sensitive Source

Figure 25-7. External Interrupt Level Sensitive Source

Maximum FIQ Latency = 4 Cycles

Maximum IRQ Latency = 4 Cycles

nFIQ

nIRQ

MCK

IRQ or FIQ
(Positive Edge)

IRQ or FIQ
(Negative Edge)

Maximum IRQ
Latency = 3 Cycles

Maximum FIQ
Latency = 3 cycles

MCK

IRQ or FIQ
(High Level)

IRQ or FIQ
(Low Level)

nIRQ

nFIQ
246
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.5.2.3 Internal Interrupt Edge Triggered Source

Figure 25-8. Internal Interrupt Edge Triggered Source

25.5.2.4 Internal Interrupt Level Sensitive Source

Figure 25-9. Internal Interrupt Level Sensitive Source

25.5.3 Normal Interrupt

25.5.3.1 Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast
Forcing).

Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writ-
ing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR
(Source Mode Register), the nIRQ line is asserted. As a new interrupt condition might have hap-
pened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.

MCK

nIRQ

Peripheral Interrupt
Becomes Active

Maximum IRQ Latency = 4.5 Cycles

MCK

nIRQ

Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active
247
8549A–CAP–10/08

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in
progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.

25.5.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled
during the service of lower priority interrupts. This requires the interrupt service routines of the
lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service rou-
tine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.

25.5.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the reg-
isters AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the cur-
rent interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus acces-
sible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by support-
ing the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
so, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral han-
dling) to be handled efficiently and independently of the application running under an operating
system.

25.5.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and the associated status bits.
248
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
It is assumed that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring

LDR PC, [PC, # -&F20]

When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, dec-
rementing it by four.

2. The ARM core enters Interrupt mode, if it has not already done so.

3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

– Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

– De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

– Automatically clears the interrupt, if it has been programmed to be edge-triggered.

– Pushes the current level and the current interrupt number on to the stack.

– Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB PC,
LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

6. The interrupt handler can then proceed as required, saving the registers that will be
used and restoring them at the end. During this phase, an interrupt of higher priority
than the current level will restart the sequence from step 1.

Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared dur-
ing this phase.

7. The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the inter-
rupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has the effect of returning from the interrupt to whatever was being exe-
cuted before, and of loading the CPSR with the stored SPSR, masking or unmasking
the interrupts depending on the state saved in SPSR_irq.
249
8549A–CAP–10/08

Note: The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).

25.5.5 Fast Interrupt

25.5.5.1 Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the processor
except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the
product, either directly or through a PIO Controller.

25.5.5.2 Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMR0 and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMR0 enables programming the fast inter-
rupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

25.5.5.3 Fast Interrupt Vectoring
The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Reg-
ister). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address 0xFFFF F104 and thus accessible from the ARM fast inter-
rupt vector at address 0x0000 001C through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically per-
forms the clear of the fast interrupt source if it is programmed in edge-triggered mode.

25.5.5.4 Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and associated status bits.

Assuming that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with
the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:

LDR PC, [PC, # -&F20]

3. The user does not need nested fast interrupts.

When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In
250
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-
cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, R0 to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB PC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address of
the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must
be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.

25.5.5.5 Fast Forcing
The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal
Interrupt source on the fast interrupt controller.

Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER)
and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers results in an
update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature for each inter-
nal or external interrupt source.

When Fast Forcing is disabled, the interrupt sources are handled as described in the previous
pages.

When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detec-
tion of the interrupt source is still active but the source cannot trigger a normal interrupt to the
processor and is not seen by the priority handler.

If the interrupt source is programmed in level-sensitive mode and an active level is sampled,
Fast Forcing results in the assertion of the nFIQ line to the core.

If the interrupt source is programmed in edge-triggered mode and an active edge is detected,
Fast Forcing results in the assertion of the nFIQ line to the core.

The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Reg-
ister (AIC_IPR).
251
8549A–CAP–10/08

The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0
(AIC_SVR0), whatever the source of the fast interrupt may be. The read of the FVR does not
clear the Source 0 when the fast forcing feature is used and the interrupt source should be
cleared by writing to the Interrupt Clear Command Register (AIC_ICCR).

All enabled and pending interrupt sources that have the fast forcing feature enabled and that are
programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear Command
Register. In doing so, they are cleared independently and thus lost interrupts are prevented.

The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.

The source 0, reserved to the fast interrupt, continues operating normally and becomes one of
the Fast Interrupt sources.

Figure 25-10. Fast Forcing

25.5.6 Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

• If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

• If there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.

This is avoided by using the Protect Mode. Writing PROT in AIC_DCR (Debug Control Register)
at 0x1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.

Source 0 _ FIQ

Input Stage

Automatic Clear

Input Stage

Automatic Clear

Source n

AIC_IPR

AIC_IMR

AIC_FFSR

AIC_IPR

AIC_IMR

Priority
Manager

nFIQ

nIRQ

Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.

Read FVR if Fast Forcing is
disabled on Sources 1 to 31.
252
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

1. Calculates active interrupt (higher than current or spurious).

2. Determines and returns the vector of the active interrupt.

3. Memorizes the interrupt.

4. Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

25.5.7 Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:

• An external interrupt source is programmed in level-sensitive mode and an active level
occurs for only a short time.

• An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

• An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

25.5.8 General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.
253
8549A–CAP–10/08

25.6 Advanced Interrupt Controller (AIC) User Interface

25.6.1 Base Address
The AIC is mapped at the address 0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
support only a ± 4-Kbyte offset.

25.6.2 Register Mapping

Notes: 1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset,
thus not pending.

2. PID2...PID31 bit fields refer to the identifiers as defined in the Peripheral Identifiers Section of the product datasheet.

Table 25-2. Register Mapping

Offset Register Name Access Reset Value

0000 Source Mode Register 0 AIC_SMR0 Read/Write 0x0

0x04 Source Mode Register 1 AIC_SMR1 Read/Write 0x0

--- --- --- --- ---

0x7C Source Mode Register 31 AIC_SMR31 Read/Write 0x0

0x80 Source Vector Register 0 AIC_SVR0 Read/Write 0x0

0x84 Source Vector Register 1 AIC_SVR1 Read/Write 0x0

--- --- --- --- ---

0xFC Source Vector Register 31 AIC_SVR31 Read/Write 0x0

0x100 Interrupt Vector Register AIC_IVR Read-only 0x0

0x104 FIQ Interrupt Vector Register AIC_FVR Read-only 0x0

0x108 Interrupt Status Register AIC_ISR Read-only 0x0

0x10C Interrupt Pending Register(2) AIC_IPR Read-only 0x0(1)

0x110 Interrupt Mask Register(2) AIC_IMR Read-only 0x0

0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0

0x118 Reserved --- --- ---

0x11C Reserved --- --- ---

0x120 Interrupt Enable Command Register(2) AIC_IECR Write-only ---

0x124 Interrupt Disable Command Register(2) AIC_IDCR Write-only ---

0x128 Interrupt Clear Command Register(2) AIC_ICCR Write-only ---

0x12C Interrupt Set Command Register(2) AIC_ISCR Write-only ---

0x130 End of Interrupt Command Register AIC_EOICR Write-only ---

0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write 0x0

0x138 Debug Control Register AIC_DCR Read/Write 0x0

0x13C Reserved --- --- ---

0x140 Fast Forcing Enable Register(2) AIC_FFER Write-only ---

0x144 Fast Forcing Disable Register(2) AIC_FFDR Write-only ---

0x148 Fast Forcing Status Register(2) AIC_FFSR Read-only 0x0
254
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.6.3 AIC Source Mode Register
Register Name: AIC_SMR0..AIC_SMR31

Access Type: Read/Write

Reset Value: 0x0

• PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).

The priority level is not used for the FIQ in the related SMR register AIC_SMRx.

• SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– SRCTYPE – – PRIOR

Table 25-3.

SRCTYPE Internal Interrupt Sources External Interrupt Sources

0 0 High level Sensitive Low level Sensitive

0 1 Positive edge triggered Negative edge triggered

1 0 High level Sensitive High level Sensitive

1 1 Positive edge triggered Positive edge triggered
255
8549A–CAP–10/08

25.6.4 AIC Source Vector Register
Register Name: AIC_SVR0..AIC_SVR31

Access Type: Read/Write

Reset Value: 0x0

• VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.

25.6.5 AIC Interrupt Vector Register
Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0x0

• IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

31 30 29 28 27 26 25 24

VECTOR

23 22 21 20 19 18 17 16

VECTOR

15 14 13 12 11 10 9 8

VECTOR

7 6 5 4 3 2 1 0

VECTOR

31 30 29 28 27 26 25 24

IRQV

23 22 21 20 19 18 17 16

IRQV

15 14 13 12 11 10 9 8

IRQV

7 6 5 4 3 2 1 0

IRQV
256
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.6.6 AIC FIQ Vector Register
Register Name: AIC_FVR

Access Type: Read-only

Reset Value: 0x0

• FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU.

25.6.7 AIC Interrupt Status Register
Register Name: AIC_ISR

Access Type: Read-only

Reset Value: 0x0

• IRQID: Current Interrupt Identifier
The Interrupt Status Register returns the current interrupt source number.

31 30 29 28 27 26 25 24

FIQV

23 22 21 20 19 18 17 16

FIQV

15 14 13 12 11 10 9 8

FIQV

7 6 5 4 3 2 1 0

FIQV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – IRQID
257
8549A–CAP–10/08

25.6.8 AIC Interrupt Pending Register
Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0x0

• FIQ, SYS, PID2-PID31: Interrupt Pending
0 = Corresponding interrupt is not pending.

1 = Corresponding interrupt is pending.

25.6.9 AIC Interrupt Mask Register
Register Name: AIC_IMR

Access Type: Read-only

Reset Value: 0x0

• FIQ, SYS, PID2-PID31: Interrupt Mask
0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ
258
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.6.10 AIC Core Interrupt Status Register
Register Name: AIC_CISR

Access Type: Read-only

Reset Value: 0x0

• NFIQ: NFIQ Status
0 = nFIQ line is deactivated.

1 = nFIQ line is active.

• NIRQ: NIRQ Status
0 = nIRQ line is deactivated.

1 = nIRQ line is active.

25.6.11 AIC Interrupt Enable Command Register
Register Name: AIC_IECR

Access Type: Write-only

• FIQ, SYS, PID2-PID3: Interrupt Enable
0 = No effect.

1 = Enables corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – NIRQ NFIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ
259
8549A–CAP–10/08

25.6.12 AIC Interrupt Disable Command Register
Register Name: AIC_IDCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Disable
0 = No effect.

1 = Disables corresponding interrupt.

25.6.13 AIC Interrupt Clear Command Register
Register Name: AIC_ICCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Clear
0 = No effect.

1 = Clears corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ
260
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.6.14 AIC Interrupt Set Command Register
Register Name: AIC_ISCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.

1 = Sets corresponding interrupt.

25.6.15 AIC End of Interrupt Command Register
Register Name: AIC_EOICR

Access Type: Write-only

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
261
8549A–CAP–10/08

25.6.16 AIC Spurious Interrupt Vector Register
Register Name: AIC_SPU

Access Type: Read/Write

Reset Value: 0x0

• SIQV: Spurious Interrupt Vector Register
The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.

25.6.17 AIC Debug Control Register
Register Name: AIC_DCR

Access Type: Read/Write

Reset Value: 0x0

• PROT: Protection Mode
0 = The Protection Mode is disabled.

1 = The Protection Mode is enabled.

• GMSK: General Mask
0 = The nIRQ and nFIQ lines are normally controlled by the AIC.

1 = The nIRQ and nFIQ lines are tied to their inactive state.

31 30 29 28 27 26 25 24

SIQV

23 22 21 20 19 18 17 16

SIQV

15 14 13 12 11 10 9 8

SIQV

7 6 5 4 3 2 1 0

SIQV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – GMSK PROT
262
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.6.18 AIC Fast Forcing Enable Register
Register Name: AIC_FFER

Access Type: Write-only

• SYS, PID2-PID31: Fast Forcing Enable
0 = No effect.

1 = Enables the fast forcing feature on the corresponding interrupt.

25.6.19 AIC Fast Forcing Disable Register
Register Name: AIC_FFDR

Access Type: Write-only

• SYS, PID2-PID31: Fast Forcing Disable
0 = No effect.

1 = Disables the Fast Forcing feature on the corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –
263
8549A–CAP–10/08

25.6.20 AIC Fast Forcing Status Register
Register Name: AIC_FFSR

Access Type: Read-only

• SYS, PID2-PID31: Fast Forcing Status
0 = The Fast Forcing feature is disabled on the corresponding interrupt.

1 = The Fast Forcing feature is enabled on the corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –
264
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26. Debug Unit (DBGU)

26.1 Description
The Debug Unit provides a single entry point from the processor for access to all the debug
capabilities of Atmel’s ARM-based systems.

The Debug Unit features a two-pin UART that can be used for several debug and trace purposes
and offers an ideal medium for in-situ programming solutions and debug monitor communica-
tions. Moreover, the association with two peripheral data controller channels permits packet
handling for these tasks with processor time reduced to a minimum.

The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by the
In-circuit Emulator of the ARM processor visible to the software. These signals indicate the sta-
tus of the DCC read and write registers and generate an interrupt to the ARM processor, making
possible the handling of the DCC under interrupt control.

Chip Identifier registers permit recognition of the device and its revision. These registers inform
as to the sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Finally, the Debug Unit features a Force NTRST capability that enables the software to decide
whether to prevent access to the system via the In-circuit Emulator. This permits protection of
the code, stored in ROM.
265
8549A–CAP–10/08

26.2 Block Diagram

Figure 26-1. Debug Unit Functional Block Diagram

Figure 26-2. Debug Unit Application Example

Peripheral DMA Controller

Baud Rate
Generator

DCC
Handler

ICE
Access
Handler

Transmit

Receive

Chip ID

Interrupt
Control

Peripheral
Bridge

Parallel
Input/
Output

DTXD

DRXD

Power
Management

Controller

ARM
Processor

force_ntrst

COMMRX

COMMTX

MCK

nTRST

NTRST
pin

dbgu_irq

APB Debug Unit

Table 26-1. Debug Unit Pin Description

Pin Name Description Type

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

Debug Unit

RS232 Drivers

Programming Tool Trace Console Debug Console

Boot Program Debug Monitor Trace Manager
266
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26.3 Product Dependencies

26.3.1 I/O Lines
Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In this
case, the programmer must first configure the corresponding PIO Controller to enable I/O lines
operations of the Debug Unit.

26.3.2 Power Management
Depending on product integration, the Debug Unit clock may be controllable through the Power
Management Controller. In this case, the programmer must first configure the PMC to enable the
Debug Unit clock. Usually, the peripheral identifier used for this purpose is 1.

26.3.3 Interrupt Source
Depending on product integration, the Debug Unit interrupt line is connected to one of the inter-
rupt sources of the Advanced Interrupt Controller. Interrupt handling requires programming of
the AIC before configuring the Debug Unit. Usually, the Debug Unit interrupt line connects to the
interrupt source 1 of the AIC, which may be shared with the real-time clock, the system timer
interrupt lines and other system peripheral interrupts, as shown in Figure 26-1. This sharing
requires the programmer to determine the source of the interrupt when the source 1 is triggered.

26.4 UART Operations
The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit charac-
ter handling (with parity). It has no clock pin.

The Debug Unit's UART is made up of a receiver and a transmitter that operate independently,
and a common baud rate generator. Receiver timeout and transmitter time guard are not imple-
mented. However, all the implemented features are compatible with those of a standard USART.

26.4.1 Baud Rate Generator
The baud rate generator provides the bit period clock named baud rate clock to both the receiver
and the transmitter.

The baud rate clock is the master clock divided by 16 times the value (CD) written in
DBGU_BRGR (Baud Rate Generator Register). If DBGU_BRGR is set to 0, the baud rate clock
is disabled and the Debug Unit's UART remains inactive. The maximum allowable baud rate is
Master Clock divided by 16. The minimum allowable baud rate is Master Clock divided by (16 x
65536).

Baud Rate MCK
16 CD×
----------------------=
267
8549A–CAP–10/08

Figure 26-3. Baud Rate Generator

26.4.2 Receiver

26.4.2.1 Receiver Reset, Enable and Disable
After device reset, the Debug Unit receiver is disabled and must be enabled before being used.
The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At
this command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the
receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already
detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its
operation.

The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit
RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled,
whatever its current state. If RSTRX is applied when data is being processed, this data is lost.

26.4.3 Start Detection and Data Sampling
The Debug Unit only supports asynchronous operations, and this affects only its receiver. The
Debug Unit receiver detects the start of a received character by sampling the DRXD signal until
it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if it is
detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a
space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is
7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the DRXD at the theoretical mid-
point of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period)
so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling
point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

MCK 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock
268
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 26-4. Start Bit Detection

Figure 26-5. Character Reception

26.4.3.1 Receiver Ready
When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY sta-
tus bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the
receive holding register DBGU_RHR is read.

Figure 26-6. Receiver Ready

26.4.3.2 Receiver Overrun
If DBGU_RHR has not been read by the software (or the Peripheral Data Controller) since the
last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in
DBGU_SR is set. OVRE is cleared when the software writes the control register DBGU_CR with
the bit RSTSTA (Reset Status) at 1.

Figure 26-7. Receiver Overrun

26.4.3.3 Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in
accordance with the field PAR in DBGU_MR. It then compares the result with the received parity

Sampling Clock

DRXD

True Start
Detection

D0

Baud Rate
Clock

D0 D1 D2 D3 D4 D5 D6 D7

DRXD

True Start Detection
Sampling

Parity Bit
Stop Bit

Example: 8-bit, parity enabled 1 stop

1 bit
period

0.5 bit
period?

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PDRXD

Read DBGU_RHR

RXRDY

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PDRXD

RSTSTA

RXRDY

OVRE

stop stop
269
8549A–CAP–10/08

bit. If different, the parity error bit PARE in DBGU_SR is set at the same time the RXRDY is set.
The parity bit is cleared when the control register DBGU_CR is written with the bit RSTSTA
(Reset Status) at 1. If a new character is received before the reset status command is written,
the PARE bit remains at 1.

Figure 26-8. Parity Error

26.4.3.4 Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been
sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error)
bit in DBGU_SR is set at the same time the RXRDY bit is set. The bit FRAME remains high until
the control register DBGU_CR is written with the bit RSTSTA at 1.

Figure 26-9. Receiver Framing Error

26.4.4 Transmitter

26.4.4.1 Transmitter Reset, Enable and Disable
After device reset, the Debug Unit transmitter is disabled and it must be enabled before being
used. The transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at 1.
From this command, the transmitter waits for a character to be written in the Transmit Holding
Register DBGU_THR before actually starting the transmission.

The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If the
transmitter is not operating, it is immediately stopped. However, if a character is being pro-
cessed into the Shift Register and/or a character has been written in the Transmit Holding
Register, the characters are completed before the transmitter is actually stopped.

The programmer can also put the transmitter in its reset state by writing the DBGU_CR with the
bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing
characters.

26.4.4.2 Transmit Format
The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is driven
depending on the format defined in the Mode Register and the data stored in the Shift Register.
One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one optional parity
bit and one stop bit at 1 are consecutively shifted out as shown on the following figure. The field

stopD0 D1 D2 D3 D4 D5 D6 D7 PSDRXD

RSTSTA

RXRDY

PARE

Wrong Parity Bit

D0 D1 D2 D3 D4 D5 D6 D7 PSDRXD

RSTSTA

RXRDY

FRAME

Stop Bit
Detected at 0

stop
270
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
PARE in the mode register DBGU_MR defines whether or not a parity bit is shifted out. When a
parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or
mark bit.

Figure 26-10. Character Transmission

26.4.4.3 Transmitter Control
When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register
DBGU_SR. The transmission starts when the programmer writes in the Transmit Holding Regis-
ter DBGU_THR, and after the written character is transferred from DBGU_THR to the Shift
Register. The bit TXRDY remains high until a second character is written in DBGU_THR. As
soon as the first character is completed, the last character written in DBGU_THR is transferred
into the shift register and TXRDY rises again, showing that the holding register is empty.

When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in
DBGU_THR have been processed, the bit TXEMPTY rises after the last stop bit has been
completed.

Figure 26-11. Transmitter Control

26.4.5 Peripheral Data Controller
Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a
Peripheral Data Controller (PDC) channel.

The peripheral data controller channels are programmed via registers that are mapped within
the Debug Unit user interface from the offset 0x100. The status bits are reported in the Debug
Unit status register DBGU_SR and can generate an interrupt.

D0 D1 D2 D3 D4 D5 D6 D7

DTXD

Start
Bit

Parity
Bit

Stop
Bit

Example: Parity enabled

Baud Rate
 Clock

DBGU_THR

Shift Register

DTXD

TXRDY

TXEMPTY

Data 0 Data 1

Data 0

Data 0

Data 1

Data 1S S PP

Write Data 0
in DBGU_THR

Write Data 1
in DBGU_THR

stopstop
271
8549A–CAP–10/08

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of
the data in DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmit-
ter. This results in a write of a data in DBGU_THR.

26.4.6 Test Modes
The Debug Unit supports three tests modes. These modes of operation are programmed by
using the field CHMODE (Channel Mode) in the mode register DBGU_MR.

The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the DRXD
line, it is sent to the DTXD line. The transmitter operates normally, but has no effect on the
DTXD line.

The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD
pins are not used and the output of the transmitter is internally connected to the input of the
receiver. The DRXD pin level has no effect and the DTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmitter
and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission.

Figure 26-12. Test Modes

26.4.7 Debug Communication Channel Support
The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug Com-
munication Channel of the ARM Processor and are driven by the In-circuit Emulator.

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD
272
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
The Debug Communication Channel contains two registers that are accessible through the ICE
Breaker on the JTAG side and through the coprocessor 0 on the ARM Processor side.

As a reminder, the following instructions are used to read and write the Debug Communication
Channel:

MRC p14, 0, Rd, c1, c0, 0

Returns the debug communication data read register into Rd

MCR p14, 0, Rd, c1, c0, 0

Writes the value in Rd to the debug communication data write register.

The bits COMMRX and COMMTX, which indicate, respectively, that the read register has been
written by the debugger but not yet read by the processor, and that the write register has been
written by the processor and not yet read by the debugger, are wired on the two highest bits of
the status register DBGU_SR. These bits can generate an interrupt. This feature permits han-
dling under interrupt a debug link between a debug monitor running on the target system and a
debugger.

26.4.8 Chip Identifier
The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and
DBGU_EXID (Extension ID). Both registers contain a hard-wired value that is read-only. The first
register contains the following fields:

• EXT - shows the use of the extension identifier register

• NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

• ARCH - identifies the set of embedded peripherals

• SRAMSIZ - indicates the size of the embedded SRAM

• EPROC - indicates the embedded ARM processor

• VERSION - gives the revision of the silicon

The second register is device-dependent and reads 0 if the bit EXT is 0.

26.5 ICE Access Prevention
The Debug Unit allows blockage of access to the system through the ARM processor's ICE
interface. This feature is implemented via the register Force NTRST (DBGU_FNR), that allows
assertion of the NTRST signal of the ICE Interface. Writing the bit FNTRST (Force NTRST) to 1
in this register prevents any activity on the TAP controller.

On standard devices, the bit FNTRST resets to 0 and thus does not prevent ICE access.

This feature is especially useful on custom ROM devices for customers who do not want their
on-chip code to be visible.
273
8549A–CAP–10/08

26.6 Debug Unit User Interface

Table 26-2. Debug Unit Memory Map

Offset Register Name Access Reset Value

0x0000 Control Register DBGU_CR Write-only –

0x0004 Mode Register DBGU_MR Read/Write 0x0

0x0008 Interrupt Enable Register DBGU_IER Write-only –

0x000C Interrupt Disable Register DBGU_IDR Write-only –

0x0010 Interrupt Mask Register DBGU_IMR Read-only 0x0

0x0014 Status Register DBGU_SR Read-only –

0x0018 Receive Holding Register DBGU_RHR Read-only 0x0

0x001C Transmit Holding Register DBGU_THR Write-only –

0x0020 Baud Rate Generator Register DBGU_BRGR Read/Write 0x0

0x0024 - 0x003C Reserved – – –

0x0040 Chip ID Register DBGU_CIDR Read-only –

0x0044 Chip ID Extension Register DBGU_EXID Read-only –

0x0048 Force NTRST Register DBGU_FNR Read/Write 0x0

0x004C - 0x00FC Reserved − − −

0x0100 - 0x0124 PDC Area – – –
274
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26.6.1 Debug Unit Control Register
Name: DBGU_CR

Access Type: Write-only

• RSTRX: Reset Receiver

0 = No effect.

1 = The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

• RSTTX: Reset Transmitter

0 = No effect.

1 = The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.

• RXEN: Receiver Enable

0 = No effect.

1 = The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable

0 = No effect.

1 = The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.

• TXEN: Transmitter Enable

0 = No effect.

1 = The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable

0 = No effect.

1 = The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.

• RSTSTA: Reset Status Bits

0 = No effect.

1 = Resets the status bits PARE, FRAME and OVRE in the DBGU_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
275
8549A–CAP–10/08

26.6.2 Debug Unit Mode Register
Name: DBGU_MR

Access Type: Read/Write

• PAR: Parity Type

• CHMODE: Channel Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CHMODE – – PAR –

7 6 5 4 3 2 1 0

– – – – – – – –

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Space: parity forced to 0

0 1 1 Mark: parity forced to 1

1 x x No parity

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo

1 0 Local Loopback

1 1 Remote Loopback
276
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26.6.3 Debug Unit Interrupt Enable Register
Name: DBGU_IER

Access Type: Write-only

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Transfer Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt

• COMMTX: Enable COMMTX (from ARM) Interrupt

• COMMRX: Enable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
277
8549A–CAP–10/08

26.6.4 Debug Unit Interrupt Disable Register
Name: DBGU_IDR

Access Type: Write-only

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Transfer Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt

• COMMTX: Disable COMMTX (from ARM) Interrupt

• COMMRX: Disable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
278
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26.6.5 Debug Unit Interrupt Mask Register
Name: DBGU_IMR

Access Type: Read-only

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Mask End of Receive Transfer Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt

• COMMTX: Mask COMMTX Interrupt

• COMMRX: Mask COMMRX Interrupt

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
279
8549A–CAP–10/08

26.6.6 Debug Unit Status Register
Name: DBGU_SR

Access Type: Read-only

• RXRDY: Receiver Ready

0 = No character has been received since the last read of the DBGU_RHR or the receiver is disabled.

1 = At least one complete character has been received, transferred to DBGU_RHR and not yet read.

• TXRDY: Transmitter Ready

0 = A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled.

1 = There is no character written to DBGU_THR not yet transferred to the Shift Register.

• ENDRX: End of Receiver Transfer

0 = The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the receiver Peripheral Data Controller channel is active.

• ENDTX: End of Transmitter Transfer

0 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is active.

• OVRE: Overrun Error

0 = No overrun error has occurred since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error

0 = No framing error has occurred since the last RSTSTA.

1 = At least one framing error has occurred since the last RSTSTA.

• PARE: Parity Error
0 = No parity error has occurred since the last RSTSTA.

1 = At least one parity error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty

0 = There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled.

1 = There are no characters in DBGU_THR and there are no characters being processed by the transmitter.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
280
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• TXBUFE: Transmission Buffer Empty

0 = The buffer empty signal from the transmitter PDC channel is inactive.

1 = The buffer empty signal from the transmitter PDC channel is active.

• RXBUFF: Receive Buffer Full
0 = The buffer full signal from the receiver PDC channel is inactive.

1 = The buffer full signal from the receiver PDC channel is active.

• COMMTX: Debug Communication Channel Write Status

0 = COMMTX from the ARM processor is inactive.

1 = COMMTX from the ARM processor is active.

• COMMRX: Debug Communication Channel Read Status

0 = COMMRX from the ARM processor is inactive.

1 = COMMRX from the ARM processor is active.
281
8549A–CAP–10/08

26.6.7 Debug Unit Receiver Holding Register
Name: DBGU_RHR

Access Type: Read-only

• RXCHR: Received Character

Last received character if RXRDY is set.

26.6.8 Debug Unit Transmit Holding Register
Name: DBGU_THR

Access Type: Write-only

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXCHR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXCHR
282
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26.6.9 Debug Unit Baud Rate Generator Register
Name: DBGU_BRGR

Access Type: Read/Write

• CD: Clock Divisor

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD Baud Rate Clock

0 Disabled

1 MCK

2 to 65535 MCK / (CD x 16)
283
8549A–CAP–10/08

26.6.10 Debug Unit Chip ID Register
Name: DBGU_CIDR

Access Type: Read-only

• VERSION: Version of the Device

• EPROC: Embedded Processor

• NVPSIZ: Nonvolatile Program Memory Size

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH SRAMSIZ

15 14 13 12 11 10 9 8

NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0

EPROC VERSION

EPROC Processor

0 0 1 ARM946ES

0 1 0 ARM7TDMI

1 0 0 ARM920T

1 0 1 ARM926EJS

NVPSIZ Size

0 0 0 0 None

0 0 0 1 8K bytes

0 0 1 0 16K bytes

0 0 1 1 32K bytes

0 1 0 0 Reserved

0 1 0 1 64K bytes

0 1 1 0 Reserved

0 1 1 1 128K bytes

1 0 0 0 Reserved

1 0 0 1 256K bytes

1 0 1 0 512K bytes

1 0 1 1 Reserved

1 1 0 0 1024K bytes

1 1 0 1 Reserved

1 1 1 0 2048K bytes

1 1 1 1 Reserved
284
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• NVPSIZ2 Second Nonvolatile Program Memory Size

• SRAMSIZ: Internal SRAM Size

NVPSIZ2 Size

0 0 0 0 None

0 0 0 1 8K bytes

0 0 1 0 16K bytes

0 0 1 1 32K bytes

0 1 0 0 Reserved

0 1 0 1 64K bytes

0 1 1 0 Reserved

0 1 1 1 128K bytes

1 0 0 0 Reserved

1 0 0 1 256K bytes

1 0 1 0 512K bytes

1 0 1 1 Reserved

1 1 0 0 1024K bytes

1 1 0 1 Reserved

1 1 1 0 2048K bytes

1 1 1 1 Reserved

SRAMSIZ Size

0 0 0 0 Reserved

0 0 0 1 1K bytes

0 0 1 0 2K bytes

0 0 1 1 6K bytes

0 1 0 0 112K bytes

0 1 0 1 4K bytes

0 1 1 0 80K bytes

0 1 1 1 160K bytes

1 0 0 0 8K bytes

1 0 0 1 16K bytes

1 0 1 0 32K bytes

1 0 1 1 64K bytes

1 1 0 0 128K bytes

1 1 0 1 256K bytes

1 1 1 0 96K bytes

1 1 1 1 512K bytes
285
8549A–CAP–10/08

• ARCH: Architecture Identifier

• NVPTYP: Nonvolatile Program Memory Type

• EXT: Extension Flag
0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

ARCH

ArchitectureHex Bin

0x19 0001 1001 AT91SAM9xx Series

0x29 0010 1001 AT91SAM9XExx Series

0x34 0011 0100 AT91x34 Series

0x37 0011 0111 AT91CAP7 Series

0x39 0011 1001 AT91CAP9 Series

0x3B 0011 1011 AT91CAP11 Series

0x40 0100 0000 AT91x40 Series

0x42 0100 0010 AT91x42 Series

0x55 0101 0101 AT91x55 Series

0x60 0110 0000 AT91SAM7Axx Series

0x61 0110 0001 AT91SAM7AQxx Series

0x63 0110 0011 AT91x63 Series

0x70 0111 0000 AT91SAM7Sxx Series

0x71 0111 0001 AT91SAM7XCxx Series

0x72 0111 0010 AT91SAM7SExx Series

0x73 0111 0011 AT91SAM7Lxx Series

0x75 0111 0101 AT91SAM7Xxx Series

0x92 1001 0010 AT91x92 Series

0xF0 1111 0000 AT75Cxx Series

NVPTYP Memory

0 0 0 ROM

0 0 1 ROMless or on-chip Flash

1 0 0 SRAM emulating ROM

0 1 0 Embedded Flash Memory

0 1 1
ROM and Embedded Flash Memory

 NVPSIZ is ROM size
 NVPSIZ2 is Flash size
286
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
26.6.11 Debug Unit Chip ID Extension Register
Name: DBGU_EXID

Access Type: Read-only

• EXID: Chip ID Extension
Reads 0 if the bit EXT in DBGU_CIDR is 0.

26.7 Debug Unit Force NTRST Register
Name: DBGU_FNR

Access Type: Read/Write

• FNTRST: Force NTRST

0 = NTRST of the ARM processor’s TAP controller is driven by the power_on_reset signal.

1 = NTRST of the ARM processor’s TAP controller is held low.

31 30 29 28 27 26 25 24

EXID

23 22 21 20 19 18 17 16

EXID

15 14 13 12 11 10 9 8

EXID

7 6 5 4 3 2 1 0

EXID

31 30 29 28 27 26 25 24

− − − − − − − −

23 22 21 20 19 18 17 16

− − − − − − − −

15 14 13 12 11 10 9 8

− − − − − − − −

7 6 5 4 3 2 1 0

− − − − − − − FN TRST
287
8549A–CAP–10/08

288
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27. Parallel Input/Output Controller (PIO)

27.1 Description
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each I/O line of the PIO Controller features:

• An input change interrupt enabling level change detection on any I/O line.

• A glitch filter providing rejection of pulses lower than one-half of clock cycle.

• Multi-drive capability similar to an open drain I/O line.

• Control of the the pull-up of the I/O line.

• Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.
289
8549A–CAP–10/08

27.2 Block Diagram

Figure 27-1. Block Diagram

Figure 27-2. Application Block Diagram

Embedded
Peripheral

Embedded
Peripheral

PIO Interrupt

PIO Controller

Up to 32 pins

PMC

Up to 32
peripheral IOs

Up to 32
peripheral IOs

PIO Clock

APB

AIC

Data, Enable

PIN 31

PIN 1

PIN 0

Data, Enable

On-Chip Peripherals

PIO Controller

On-Chip Peripheral Drivers
Control & Command

Driver
Keyboard Driver

Keyboard Driver General Purpose I/Os External Devices
290
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.3 Product Dependencies

27.3.1 Pin Multiplexing
Each pin is configurable, according to product definition as either a general-purpose I/O line
only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

27.3.2 External Interrupt Lines
The interrupt signals FIQ and IRQ0 to IRQn are most generally multiplexed through the PIO
Controllers. However, it is not necessary to assign the I/O line to the interrupt function as the
PIO Controller has no effect on inputs and the interrupt lines (FIQ or IRQs) are used only as
inputs.

27.3.3 Power Management
The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the I/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available.
Note that the Input Change Interrupt and the read of the pin level require the clock to be
validated.

After a hardware reset, the PIO clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line
information.

27.3.4 Interrupt Generation
For interrupt handling, the PIO Controllers are considered as user peripherals. This means that
the PIO Controller interrupt lines are connected among the interrupt sources 2 to 31. Refer to the
PIO Controller peripheral identifier in the product description to identify the interrupt sources
dedicated to the PIO Controllers.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.
291
8549A–CAP–10/08

27.4 Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic asso-
ciated to each I/O is represented in Figure 27-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 27-3. I/O Line Control Logic

1

0

1

0

1

0

Glitch
Filter

Peripheral B
Input

Peripheral A
Input

1

0

PIO_IFDR[0]

PIO_IFSR[0]

PIO_IFER[0]

Edge
Detector

PIO_PDSR[0] PIO_ISR[0]

PIO_IDR[0]

PIO_IMR[0]

PIO_IER[0]

PIO Interrupt

(Up to 32 possible inputs)

PIO_ISR[31]

PIO_IDR[31]

PIO_IMR[31]

PIO_IER[31]

Pad

1

0

PIO_PUDR[0]

PIO_PUSR[0]

PIO_PUER[0]

PIO_MDDR[0]

PIO_MDSR[0]

PIO_MDER[0]

PIO_CODR[0]

PIO_ODSR[0]

PIO_SODR[0]

PIO_PDR[0]

PIO_PSR[0]

PIO_PER[0]

1

0

1

0

PIO_BSR[0]

PIO_ABSR[0]

PIO_ASR[0]

Peripheral B
Output Enable

Peripheral A
Output Enable

Peripheral B
Output

Peripheral A
Output

PIO_ODR[0]

PIO_OSR[0]

PIO_OER[0]
292
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.4.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pull-
up Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit
in PIO_PUSR (Pull-up Status Register). Reading a 1 in PIO_PUSR means the pull-up is dis-
abled and reading a 0 means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0.

27.4.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO
controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.

27.4.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Regis-
ter). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently selected.
For each pin, the corresponding bit at level 0 means peripheral A is selected whereas the corre-
sponding bit at level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A.
However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line
mode.

Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the corresponding
peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.

27.4.4 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on the
value in PIO_ABSR, determines whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).
293
8549A–CAP–10/08

The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the I/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the I/O line.

27.4.5 Synchronous Data Output
Controlling all parallel busses using several PIOs requires two successive write operations in the
PIO_SODR and PIO_CODR registers. This may lead to unexpected transient values. The PIO
controller offers a direct control of PIO outputs by single write access to PIO_ODSR (Output
Data Status Register). Only bits unmasked by PIO_OWSR (Output Write Status Register) are
written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER (Output Write Enable
Register) and cleared by writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at
0x0.

27.4.6 Multi Drive Control (Open Drain)
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

27.4.7 Output Line Timings
Figure 27-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 27-4 also shows when the feedback in PIO_PDSR is available.
294
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 27-4. Output Line Timings

27.4.8 Inputs
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

27.4.9 Input Glitch Filtering
Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in Figure 27-5.

The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.

2 cycles

APB Access

2 cycles

APB Access

MCK

Write PIO_SODR
Write PIO_ODSR at 1

PIO_ODSR

PIO_PDSR

Write PIO_CODR
Write PIO_ODSR at 0
295
8549A–CAP–10/08

Figure 27-5. Input Glitch Filter Timing

27.4.10 Input Change Interrupt
The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable
Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and disable the
input change interrupt by setting and clearing the corresponding bit in PIO_IMR (Interrupt Mask
Register). As Input change detection is possible only by comparing two successive samplings of
the input of the I/O line, the PIO Controller clock must be enabled. The Input Change Interrupt is
available, regardless of the configuration of the I/O line, i.e. configured as an input only, con-
trolled by the PIO Controller or assigned to a peripheral function.

When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt
Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt
line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to gen-
erate a single interrupt signal to the Advanced Interrupt Controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled.

Figure 27-6. Input Change Interrupt Timings

27.5 I/O Lines Programming Example
The programing example as shown in Table 27-1 below is used to define the following
configuration.

• 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain,
with pull-up resistor

MCK

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle 1 cycle 1 cycle

up to 1.5 cycles

2 cycles

up to 2.5 cycles up to 2 cycles

1 cycle

1 cycle

MCK

Pin Level

Read PIO_ISR APB Access

PIO_ISR

APB Access
296
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor

• Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

• Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

• I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

• I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor

• I/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

27.6 User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not mul-

Table 27-1. Programming Example

Register Value to be Written

PIO_PER 0x0000 FFFF

PIO_PDR 0x0FFF 0000

PIO_OER 0x0000 00FF

PIO_ODR 0x0FFF FF00

PIO_IFER 0x0000 0F00

PIO_IFDR 0x0FFF F0FF

PIO_SODR 0x0000 0000

PIO_CODR 0x0FFF FFFF

PIO_IER 0x0F00 0F00

PIO_IDR 0x00FF F0FF

PIO_MDER 0x0000 000F

PIO_MDDR 0x0FFF FFF0

PIO_PUDR 0x00F0 00F0

PIO_PUER 0x0F0F FF0F

PIO_ASR 0x0F0F 0000

PIO_BSR 0x00F0 0000

PIO_OWER 0x0000 000F

PIO_OWDR 0x0FFF FFF0
297
8549A–CAP–10/08

tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PIO_PSR returns
1 systematically.

Table 27-2. Register Mapping

Offset Register Name Access Reset Value

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register PIO_PSR Read-only (1)

0x000C Reserved

0x0010 Output Enable Register PIO_OER Write-only –

0x0014 Output Disable Register PIO_ODR Write-only –

0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000

0x001C Reserved

0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000

0x002C Reserved

0x0030 Set Output Data Register PIO_SODR Write-only –

0x0034 Clear Output Data Register PIO_CODR Write-only

0x0038 Output Data Status Register PIO_ODSR
Read-only

or(2)

Read/Write
–

0x003C Pin Data Status Register PIO_PDSR Read-only (3)

0x0040 Interrupt Enable Register PIO_IER Write-only –

0x0044 Interrupt Disable Register PIO_IDR Write-only –

0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000

0x004C Interrupt Status Register(4) PIO_ISR Read-only 0x00000000

0x0050 Multi-driver Enable Register PIO_MDER Write-only –

0x0054 Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000

0x005C Reserved

0x0060 Pull-up Disable Register PIO_PUDR Write-only –

0x0064 Pull-up Enable Register PIO_PUER Write-only –

0x0068 Pad Pull-up Status Register PIO_PUSR Read-only 0x00000000

0x006C Reserved
298
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Notes: 1. Reset value of PIO_PSR depends on the product implementation.

2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second
register.

0x0070 Peripheral A Select Register(5) PIO_ASR Write-only –

0x0074 Peripheral B Select Register(5) PIO_BSR Write-only –

0x0078 AB Status Register(5) PIO_ABSR Read-only 0x00000000

0x007C
to
0x009C

Reserved

0x00A0 Output Write Enable PIO_OWER Write-only –

0x00A4 Output Write Disable PIO_OWDR Write-only –

0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000

0x00AC Reserved

Table 27-2. Register Mapping (Continued)

Offset Register Name Access Reset Value
299
8549A–CAP–10/08

27.6.1 PIO Controller PIO Enable Register
Name: PIO_PER

Access Type: Write-only

• P0-P31: PIO Enable
0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

27.6.2 PIO Controller PIO Disable Register
Name: PIO_PDR

Access Type: Write-only

• P0-P31: PIO Disable
0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
300
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.3 PIO Controller PIO Status Register
Name: PIO_PSR

Access Type: Read-only

• P0-P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

27.6.4 PIO Controller Output Enable Register
Name: PIO_OER

Access Type: Write-only

• P0-P31: Output Enable
0 = No effect.

1 = Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
301
8549A–CAP–10/08

27.6.5 PIO Controller Output Disable Register
Name: PIO_ODR

Access Type: Write-only

• P0-P31: Output Disable
0 = No effect.

1 = Disables the output on the I/O line.

27.6.6 PIO Controller Output Status Register
Name: PIO_OSR

Access Type: Read-only

• P0-P31: Output Status
0 = The I/O line is a pure input.

1 = The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
302
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.7 PIO Controller Input Filter Enable Register
Name: PIO_IFER

Access Type: Write-only

• P0-P31: Input Filter Enable
0 = No effect.

1 = Enables the input glitch filter on the I/O line.

27.6.8 PIO Controller Input Filter Disable Register
Name: PIO_IFDR

Access Type: Write-only

• P0-P31: Input Filter Disable
0 = No effect.

1 = Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
303
8549A–CAP–10/08

27.6.9 PIO Controller Input Filter Status Register
Name: PIO_IFSR

Access Type: Read-only

• P0-P31: Input Filer Status
0 = The input glitch filter is disabled on the I/O line.

1 = The input glitch filter is enabled on the I/O line.

27.6.10 PIO Controller Set Output Data Register
Name: PIO_SODR

Access Type: Write-only

• P0-P31: Set Output Data
0 = No effect.

1 = Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
304
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.11 PIO Controller Clear Output Data Register
Name: PIO_CODR

Access Type: Write-only

• P0-P31: Set Output Data
0 = No effect.

1 = Clears the data to be driven on the I/O line.

27.6.12 PIO Controller Output Data Status Register
Name: PIO_ODSR

Access Type: Read-only or Read/Write

• P0-P31: Output Data Status
0 = The data to be driven on the I/O line is 0.

1 = The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
305
8549A–CAP–10/08

27.6.13 PIO Controller Pin Data Status Register
Name: PIO_PDSR

Access Type: Read-only

• P0-P31: Output Data Status
0 = The I/O line is at level 0.

1 = The I/O line is at level 1.

27.6.14 PIO Controller Interrupt Enable Register
Name: PIO_IER

Access Type: Write-only

• P0-P31: Input Change Interrupt Enable
0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
306
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.15 PIO Controller Interrupt Disable Register
Name: PIO_IDR

Access Type: Write-only

• P0-P31: Input Change Interrupt Disable
0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

27.6.16 PIO Controller Interrupt Mask Register
Name: PIO_IMR

Access Type: Read-only

• P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
307
8549A–CAP–10/08

27.6.17 PIO Controller Interrupt Status Register
Name: PIO_ISR

Access Type: Read-only

• P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

27.6.18 PIO Multi-driver Enable Register
Name: PIO_MDER

Access Type: Write-only

• P0-P31: Multi Drive Enable.
0 = No effect.

1 = Enables Multi Drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
308
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.19 PIO Multi-driver Disable Register
Name: PIO_MDDR

Access Type: Write-only

• P0-P31: Multi Drive Disable.
0 = No effect.

1 = Disables Multi Drive on the I/O line.

27.6.20 PIO Multi-driver Status Register
Name: PIO_MDSR

Access Type: Read-only

• P0-P31: Multi Drive Status.
0 = The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.

1 = The Multi Drive is enabled on the I/O line. The pin is driven at low level only.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
309
8549A–CAP–10/08

27.6.21 PIO Pull Up Disable Register
Name: PIO_PUDR

Access Type: Write-only

• P0-P31: Pull Up Disable.
0 = No effect.

1 = Disables the pull up resistor on the I/O line.

27.6.22 PIO Pull Up Enable Register
Name: PIO_PUER

Access Type: Write-only

• P0-P31: Pull Up Enable.
0 = No effect.

1 = Enables the pull up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
310
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.23 PIO Pull Up Status Register
Name: PIO_PUSR

Access Type: Read-only

• P0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.

1 = Pull Up resistor is disabled on the I/O line.

27.6.24 PIO Peripheral A Select Register
Name: PIO_ASR

Access Type: Write-only

• P0-P31: Peripheral A Select.
0 = No effect.

1 = Assigns the I/O line to the Peripheral A function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
311
8549A–CAP–10/08

27.6.25 PIO Peripheral B Select Register
Name: PIO_BSR

Access Type: Write-only

• P0-P31: Peripheral B Select.
0 = No effect.

1 = Assigns the I/O line to the peripheral B function.

27.6.26 PIO Peripheral A B Status Register
Name: PIO_ABSR

Access Type: Read-only

• P0-P31: Peripheral A B Status.
0 = The I/O line is assigned to the Peripheral A.

1 = The I/O line is assigned to the Peripheral B.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
312
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.6.27 PIO Output Write Enable Register
Name: PIO_OWER

Access Type: Write-only

• P0-P31: Output Write Enable.
0 = No effect.

1 = Enables writing PIO_ODSR for the I/O line.

27.6.28 PIO Output Write Disable Register
Name: PIO_OWDR

Access Type: Write-only

• P0-P31: Output Write Disable.
0 = No effect.

1 = Disables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
313
8549A–CAP–10/08

27.6.29 PIO Output Write Status Register
Name: PIO_OWSR

Access Type: Read-only

• P0-P31: Output Write Status.
0 = Writing PIO_ODSR does not affect the I/O line.

1 = Writing PIO_ODSR affects the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
314
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28. Serial Peripheral Interface (SPI)

28.1 Description
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master”' which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master. There may be no more than one slave transmitting data during any particular
transfer.

• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.
315
8549A–CAP–10/08

28.2 Block Diagram

Figure 28-1. Block Diagram

Figure 28-2. Block Diagram

SPI Interface

Interrupt Control

PIO

PDC

PMC
MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

DIV

NPCS3

APB

MCK
32

SPI Interface

Interrupt Control

PIO

PDC

PMC
MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

NPCS3

APB
316
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.3 Application Block Diagram

Figure 28-3. Application Block Diagram: Single Master/Multiple Slave Implementation

28.4 Signal Description

28.5 Product Dependencies

28.5.1 I/O Lines
The pins used for interfacing the compliant external devices are multiplexed with PIO lines. The
programmer must first program the PIOA controller to select the SPI I/O alternate functions.

28.5.2 Power Management
The SPI may be clocked through the Power Management Controller (PMC), thus the program-
mer must first configure the PMC to enable the SPI clock.

Table 28-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3
317
8549A–CAP–10/08

28.5.3 Interrupt
The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the SPI interrupt requires programming the AIC before configuring the SPI.

28.6 Functional Description

28.6.1 Modes of Operation
The SPI operates in Master Mode or in Slave Mode.
318
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

28.6.2 Data Transfer
Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 28-2 shows the four modes and corresponding parameter settings.

Figure 28-4 and Figure 28-5 show examples of data transfers.

Table 28-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA

0 0 1

1 0 0

2 1 1

3 1 0
319
8549A–CAP–10/08

Figure 28-4. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Figure 28-5. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

28.6.3 Master Mode Operations
When configured in Master Mode, the SPI operates on the clock generated by the internal pro-
grammable baud rate generator. It fully controls the data transfers to and from the slave(s)

6

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined, but normally MSB of previous character received.

1 2 3 4 5 7 86

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

* Not defined but normally LSB of previous character transmitted.

2

2

6

320
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock
signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Trans-
mit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writting the TDR, the PCS field must be set in order to select a slave.

If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is
completed. Then, the received data is transferred from the Shift Register to SPI_RDR, the data
in SPI_TDR is loaded in the Shift Register and a new transfer starts.

The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit
(Transmit Data Register Empty) in the Status Register (SPI_SR). When new data is written in
SPI_TDR, this bit is cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR register. If a transfer delay
(DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said
delay. The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SPI_SR). When the received data is read,
the RDRF bit is cleared.

If the SPI_RDR (Receive Data Register) has not been read before new data is received, the
Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in
SPI_RDR. The user has to read the status register to clear the OVRES bit.

Figure 28-7 on page 323 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 28-8 on page 324 shows a flow chart describing how transfers are handled.
321
8549A–CAP–10/08

28.6.3.1 Master Mode Block Diagram

Figure 28-6. Master Mode Block Diagram w/ FDIV

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0..3

CPOL
NCPHA

BITS

0

1

FDIV

MCK

MCK/N

Baud Rate Generator

SPI_CSR0..3

SCBR

NPCS3

NPCS0

NPCS2

NPCS1

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSR0..3
CSAAT

PCSDEC

MODFDIS

MSTR
322
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 28-7. Master Mode Block Diagram w/o FDIV

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0..3

CPOL
NCPHA

BITS

MCK Baud Rate Generator

SPI_CSR0..3

SCBR

NPCS3

NPCS0

NPCS2

NPCS1

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSR0..3
CSAAT

PCSDEC

MODFDIS

MSTR
323
8549A–CAP–10/08

28.6.3.2 Master Mode Flow Diagram

Figure 28-8. Master Mode Flow Diagram

SPI Enable

CSAAT ?

PS ?

1

0

0

1

1

NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS)

Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE = 1

Data Transfer

SPI_RDR(RD) = Serializer
RDRF = 1

TDRE ?

NPCS = 0xF

Delay DLYBCS

Fixed
 peripheral

Variable
peripheral

Delay DLYBCT

0

1
CSAAT ?

0

TDRE ?
1

0

PS ?
0

1

SPI_TDR(PCS)
= NPCS ?

no

yes
SPI_MR(PCS)

= NPCS ?

no

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_TDR(PCS)

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_MR(PCS),
 SPI_TDR(PCS)

Fixed
 peripheral

Variable
peripheral

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
 Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.
324
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.6.3.3 Clock Generation
The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 1 and 255. The selection between Master Clock or Master
Clock divided by 32 is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

28.6.3.4 Transfer Delays
Figure 28-9 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

• The delay between chip selects, programmable only once for all the chip selects by writing
the DLYBCS field in the Mode Register. Allows insertion of a delay between release of one
chip select and before assertion of a new one.

• The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

• The delay between consecutive transfers, independently programmable for each chip select
by writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on
the same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 28-9. Programmable Delays

28.6.3.5 Peripheral Selection
The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK
325
8549A–CAP–10/08

• Fixed Peripheral Select: SPI exchanges data with only one peripheral

• Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In
this case, the current peripheral is defined by the PCS field in SPI_MR and the PCS field in the
SPI_TDR has no effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is
used to select the current peripheral. This means that the peripheral selection can be defined for
each new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data
to be transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit
wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, how-
ever the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI
lines with the chip select configuration registers. This is not the optimal means in term of mem-
ory size for the buffers, but it provides a very effective means to exchange data with several
peripherals without any intervention of the processor.

28.6.3.6 Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (SPI_MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.

28.6.3.7 Peripheral Deselection
When operating normally, as soon as the transfer of the last data written in SPI_TDR is com-
pleted, the NPCS lines all rise. This might lead to runtime error if the processor is too long in
responding to an interrupt, and thus might lead to difficulties for interfacing with some serial
peripherals requiring the chip select line to remain active during a full set of transfers.
326
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 28-10 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 28-10. Peripheral Deselection

28.6.3.8 Mode Fault Detection
A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read and
the SPI is automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR (Con-
trol Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (SPI_MR).

A

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

DLYBCT

PCS=A

A

DLYBCS

DLYBCT

A

PCS = A

AA

DLYBCT

A A

CSAAT = 0

DLYBCT

A A

CSAAT = 1

A

327
8549A–CAP–10/08

28.6.4 SPI Slave Mode
When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (SPI_CSR0). These bits are processed
following a phase and a polarity defined respectively by the NCPHA and CPOL bits of the
SPI_CSR0. Note that BITS, CPOL and NCPHA of the other Chip Select Registers have no
effect when the SPI is programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If the SPI_RDR (Receive Data Register) has not been read before new
data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data
is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (SPI_TDR), the last data received is transferred.
If no data has been received since the last reset, all bits are transmitted low, as the Shift Regis-
ter resets at 0.

When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in SPI_TDR until a transfer occurs, i.e. NSS falls
and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in
SPI_TDR is transferred in the Shift Register and the TDRE bit rises. This enables frequent
updates of critical variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in SPI_TDR since the last
load from SPI_TDR to the Shift Register, the Shift Register is not modified and the last received
character is retransmitted.

Figure 28-11 shows a block diagram of the SPI when operating in Slave Mode.

Figure 28-11. Slave Mode Functional Block Diagram

Shift Register

SPCK

SPIENS

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0

CPOL
NCPHA

BITS

SPIEN

SPIDIS

MISO
328
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.7 Serial Peripheral Interface (SPI) User Interface

Table 28-3. SPI Register Mapping

Offset Register Register Name Access Reset

0x00 Control Register SPI_CR Write-only ---

0x04 Mode Register SPI_MR Read/Write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only ---

0x10 Status Register SPI_SR Read-only 0x00000000 (1)

1.Technically, the SPI_SR register is reset to 0x00000000. However, if the SPI clock is enabled, the value may be read as
0x000000F0 right after reset due to the value of the corresponding PDC-related status inputs for register bits 7 down to 4.

0x14 Interrupt Enable Register SPI_IER Write-only ---

0x18 Interrupt Disable Register SPI_IDR Write-only ---

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20 - 0x2C Reserved

0x30 Chip Select Register 0 SPI_CSR0 Read/Write 0x0

0x34 Chip Select Register 1 SPI_CSR1 Read/Write 0x0

0x38 Chip Select Register 2 SPI_CSR2 Read/Write 0x0

0x3C Chip Select Register 3 SPI_CSR3 Read/Write 0x0

0x004C - 0x00F8 Reserved – – –

0x004C - 0x00FC Reserved – – –

0x100 - 0x124 Reserved for the PDC
329
8549A–CAP–10/08

28.7.1 SPI Control Register
Name: SPI_CR

Access Type: Write-only

• SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

As soon as SPIDIS is set, SPI finishes its tranfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

• SWRST: SPI Software Reset
0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in slave mode after software reset.

PDC channels are not affected by software reset.

• LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN
330
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.7.2 SPI Mode Register
Name: SPI_MR

Access Type: Read/Write

• MSTR: Master/Slave Mode
0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select
0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.

SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 14.

• FDIV: Clock Selection
0 = The SPI operates at MCK.

1 = The SPI operates at MCK/32.

• MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

• LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled (

LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on
MOSI.)

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LLB – – MODFDIS FDIV PCSDEC PS MSTR
331
8549A–CAP–10/08

• PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects
This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is 0:

If FDIV is 1:

28.7.3 SPI Receive Data Register
Name: SPI_RDR

Access Type: Read-only
31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

RD

7 6 5 4 3 2 1 0

RD

Delay Between Chip Selects DLYBCS
MCK

-----------------------=

Delay Between Chip Selects DLYBCS
MCK

-----------------------=

Delay Between Chip Selects DLYBCS N×
MCK

----------------------------------=
332
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

• PCS: Peripheral Chip Select
In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.
333
8549A–CAP–10/08

28.7.4 SPI Transmit Data Register
Name: SPI_TDR

Access Type: Write-only

• TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

• PCS: Peripheral Chip Select
This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

• LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

TD

7 6 5 4 3 2 1 0

TD
334
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.7.5 SPI Status Register
Name: SPI_SR

Access Type: Read-only

• RDRF: Receive Data Register Full
0 = No data has been received since the last read of SPI_RDR

1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.

• TDRE: Transmit Data Register Empty
0 = Data has been written to SPI_TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SPI_SR.

1 = A Mode Fault occurred since the last read of the SPI_SR.

• OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.

• ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

• ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

1 = The Transmit Counter Register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

• RXBUFF: RX Buffer Full
0 = SPI_RCR(1) or SPI_RNCR(1) has a value other than 0.

1 = Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0.

• TXBUFE: TX Buffer Empty
0 = SPI_TCR(1) or SPI_TNCR(1) has a value other than 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
335
8549A–CAP–10/08

1 = Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.

• NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.

1 = A rising edge occurred on NSS pin since last read.

• TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in SPI_TDR.

1 = SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of
such delay.

• SPIENS: SPI Enable Status
0 = SPI is disabled.

1 = SPI is enabled.

Note: 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC.
336
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.7.6 SPI Interrupt Enable Register
Name: SPI_IER

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• TXEMPTY: Transmission Registers Empty Enable

• NSSR: NSS Rising Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
337
8549A–CAP–10/08

28.7.7 SPI Interrupt Disable Register
Name: SPI_IDR

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• TXEMPTY: Transmission Registers Empty Disable

• NSSR: NSS Rising Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
338
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
28.7.8 SPI Interrupt Mask Register
Name: SPI_IMR

Access Type: Read-only

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• TXEMPTY: Transmission Registers Empty Mask

• NSSR: NSS Rising Interrupt Mask
0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
339
8549A–CAP–10/08

28.7.9 SPI Chip Select Register
Name: SPI_CSR0... SPI_CSR3

Access Type: Read/Write

• CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

• CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.

• BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS CSAAT – NCPHA CPOL

BITS Bits Per Transfer

0000 8

0001 9

0010 10

0011 11

0100 12

0101 13

0110 14

0111 15

1000 16

1001 Reserved
340
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

• DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Otherwise, the following equations determine the delay:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

1010 Reserved

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved

BITS Bits Per Transfer

 SPCK Baudrate MCK
SCBR
---------------=

 SPCK Baudrate MCK
SCBR
---------------=

SPCK Baudrate MCK
N SCBR×()

-------------------------------=

Delay Before SPCK DLYBS
MCK

-------------------=

Delay Before SPCK DLYBS
MCK

-------------------=

Delay Before SPCK N DLYBS×
MCK

------------------------------=
341
8549A–CAP–10/08

• DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

Delay Between Consecutive Transfers 32 DLYBCT×
MCK

-------------------------------------=

Delay Between Consecutive Transfers 32 DLYBCT×
MCK

-------------------------------------=

Delay Between Consecutive Transfers 32 N× DLYBCT×
MCK

--- N SCBR×
2MCK

--------------------------+=
342
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29. Universal Synchronous Asynchronous Receiver Transmitter (USART)

29.1 Description
The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 buses, with
ISO7816 T = 0 or T = 1 smart card slots, infrared transceivers and connection to modem ports.
The hardware handshaking feature enables an out-of-band flow control by automatic manage-
ment of the pins RTS and CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.
343
8549A–CAP–10/08

29.2 Block Diagram

Figure 29-1. USART Block Diagram

Note: The following USART0 and USART1 pins are not available through PIO on AT91CAP7E: DTR,
DSR, DCD, and RI.

Peripheral DMA
Controller

Channel Channel

AIC

Receiver

USART
Interrupt

RXD

TXD

SCK

USART PIO
Controller

CTS

RTS

DTR

DSR

DCD

RI

Transmitter

Modem
Signals
Control

Baud Rate
Generator

User Interface

PMC
MCK

SLCK

DIV
MCK/DIV

APB
344
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.3 Application Block Diagram

Figure 29-2. Application Block Diagram

29.4 I/O Lines Description

Table 29-1. I/O Line Description

Name Description Type Active Level

SCK Serial Clock I/O

TXD Transmit Serial Data I/O

RXD Receive Serial Data Input

RI Ring Indicator Input Low

DSR Data Set Ready Input Low

DCD Data Carrier Detect Input Low

DTR Data Terminal Ready Output Low

CTS Clear to Send Input Low

RTS Request to Send Output Low

Smart
Card
Slot

USART

RS232
Drivers

Modem

RS485
Drivers

Differential
Bus

IrDA
Transceivers

Modem
Driver

Field Bus
Driver

EMV
Driver IrDA

Driver

IrLAP

RS232
Drivers

Serial
Port

Serial
Driver

PPP

PSTN
345
8549A–CAP–10/08

29.5 Product Dependencies

29.5.1 I/O Lines
The pins used for interfacing the USART are multiplexed with the PIO lines. The programmer
must first program the PIOA controller to select the USART I/O alternate functions. If I/O lines of
the USART are not used by the application, they can be used for other purposes by the PIO
Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory. If the hardware handshaking feature or Modem mode is used, the internal pull up
on TXD must also be enabled.

All the pins of the modems may or may not be implemented on the USART. On USARTs not
equipped with the corresponding pin, the associated control bits and statuses have no effect on
the behavior of the USART.

29.5.2 Power Management
The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Management Controller (PMC) before using the USART. However, if the application
does not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

29.5.3 Interrupt
The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the USART interrupt requires the AIC to be programmed first. Note that it is not
recommended to use the USART interrupt line in edge sensitive mode.
346
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.6 Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

• 5- to 9-bit full-duplex asynchronous serial communication

– MSB- or LSB-first

– 1, 1.5 or 2 stop bits

– Parity even, odd, marked, space or none

– By 8 or by 16 over-sampling receiver frequency

– Optional hardware handshaking

– Optional modem signals management

– Optional break management

– Optional multidrop serial communication

• High-speed 5- to 9-bit full-duplex synchronous serial communication

– MSB- or LSB-first

– 1 or 2 stop bits

– Parity even, odd, marked, space or none

– By 8 or by 16 over-sampling frequency

– Optional hardware handshaking

– Optional modem signals management

– Optional break management

– Optional multidrop serial communication

• RS485 with driver control signal

• ISO7816, T0 or T1 protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit

• InfraRed IrDA Modulation and Demodulation

• Test modes

– Remote loopback, local loopback, automatic echo

29.6.1 Baud Rate Generator
The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (US_MR) between:

• the Master Clock MCK

• a division of the Master Clock, the divider being product dependent, but generally set to 8

• the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (US_BRGR). If CD is programmed at 0, the Baud Rate
Generator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.
347
8549A–CAP–10/08

If the external SCK clock is selected, the duration of the low and high levels of the signal pro-
vided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 4.5 times lower than MCK.

Figure 29-3. Baud Rate Generator

29.6.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR).
The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in US_MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possi-
ble clock and that OVER is programmed at 1.

Baud Rate Calculation Example

Table 29-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDI

Baudrate SelectedClock
8 2 Over–()CD()

--=
348
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

29.6.1.2 Fractional Baud Rate in Asynchronous Mode
The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the
clock divider. This feature is only available when using USART normal mode. The fractional
Baud Rate is calculated using the following formula:

Table 29-2. Baud Rate Example (OVER = 0)

Source Clock
Expected Baud

Rate Calculation Result CD Actual Baud Rate Error

MHz Bit/s Bit/s

3 686 400 38 400 6.00 6 38 400.00 0.00%

4 915 200 38 400 8.00 8 38 400.00 0.00%

5 000 000 38 400 8.14 8 39 062.50 1.70%

7 372 800 38 400 12.00 12 38 400.00 0.00%

8 000 000 38 400 13.02 13 38 461.54 0.16%

12 000 000 38 400 19.53 20 37 500.00 2.40%

12 288 000 38 400 20.00 20 38 400.00 0.00%

14 318 180 38 400 23.30 23 38 908.10 1.31%

14 745 600 38 400 24.00 24 38 400.00 0.00%

18 432 000 38 400 30.00 30 38 400.00 0.00%

24 000 000 38 400 39.06 39 38 461.54 0.16%

24 576 000 38 400 40.00 40 38 400.00 0.00%

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

BaudRate MCK CD 16×⁄=

Error 1
ExpectedBaudRate

ActualBaudRate
---⎝ ⎠

⎛ ⎞–=
349
8549A–CAP–10/08

The modified architecture is presented below:

Figure 29-4. Fractional Baud Rate Generator

29.6.1.3 Baud Rate in Synchronous Mode
If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in US_BRGR.

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in
US_BRGR has no effect. The external clock frequency must be at least 4.5 times lower than the
system clock.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the
SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty
cycle on the SCK pin, even if the value programmed in CD is odd.

29.6.1.4 Baud Rate in ISO 7816 Mode
The ISO7816 specification defines the bit rate with the following formula:

where:

Baudrate SelectedClock

8 2 Over–() CD FP
8

-------+⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞
---=

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDIglitch-free
 logic

Modulus
Control

FP

FP

BaudRate SelectedClock
CD

--------------------------------------=

B Di
Fi
------ f×=
350
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• B is the bit rate

• Di is the bit-rate adjustment factor

• Fi is the clock frequency division factor

• f is the ISO7816 clock frequency (Hz)

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 29-3.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 29-4.

Table 29-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud
Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to
feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (US_FIDI). This is performed by the Sampling Divider, which performs a division by up
to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the
user must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 29-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the ISO 7816 clock.

Table 29-3. Binary and Decimal Values for Di

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 29-4. Binary and Decimal Values for Fi

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 29-5. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4
351
8549A–CAP–10/08

Figure 29-5. Elementary Time Unit (ETU)

29.6.2 Receiver and Transmitter Control
After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (US_CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (US_CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register
(US_CR). The software resets clear the status flag and reset internal state machines but the
user interface configuration registers hold the value configured prior to software reset. Regard-
less of what the receiver or the transmitter is performing, the communication is immediately
stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the
USART waits until the end of reception of the current character, then the reception is stopped. If
the transmitter is disabled while it is operating, the USART waits the end of transmission of both
the current character and character being stored in the Transmit Holding Register (US_THR). If
a timeguard is programmed, it is handled normally.

29.6.3 Synchronous and Asynchronous Modes

29.6.3.1 Transmitter Operations
The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The
parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or none
parity bit can be configured. The MSBF field in US_MR configures which data bit is sent first. If
written at 1, the most significant bit is sent first. At 0, the less significant bit is sent first. The num-
ber of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is supported in
asynchronous mode only.

1 ETU

ISO7816 Clock
on SCK

ISO7816 I/O Line
on TXD

FI_DI_RATIO
ISO7816 Clock Cycles
352
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 29-6. Character Transmit

The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter
reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready),
which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters
written in US_THR have been processed. When the current character processing is completed,
the last character written in US_THR is transferred into the Shift Register of the transmitter and
US_THR becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
US_THR while TXRDY is active has no effect and the written character is lost.

Figure 29-7. Transmitter Status

29.6.3.2 Manchester Encoder
When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester II format. To enable this mode, set the MAN field in the
US_MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmit-
ted as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the
midpoint of each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the
receiver has more error control since the expected input must show a change at the center of a
bit cell. An example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes
to 10 01 10 10 01 01 01 10, assuming the default polarity of the encoder. Figure 29-8 illustrates
this coding scheme.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY
353
8549A–CAP–10/08

Figure 29-8. NRZ to Manchester Encoding

The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the US_MAN register, the
field TX_PL is used to configure the preamble length. Figure 29-9 illustrates and defines the
valid patterns. To improve flexibility, the encoding scheme can be configured using the
TX_MPOL field in the US_MAN register. If the TX_MPOL field is set to zero (default), a logic
zero is encoded with a zero-to-one transition and a logic one is encoded with a one-to-zero tran-
sition. If the TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition
and a logic zero is encoded with a zero-to-one transition.

Figure 29-9. Preamble Patterns, Default Polarity Assumed

A start frame delimiter is to be configured using the ONEBIT field in the US_MR register. It con-
sists of a user-defined pattern that indicates the beginning of a valid data. Figure 29-10
illustrates these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT
at 1), a logic zero is Manchester encoded and indicates that a new character is being sent seri-
ally on the line. If the start frame delimiter is a synchronization pattern also referred to as sync
(ONEBIT at 0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new
character. The sync waveform is in itself an invalid Manchester waveform as the transition

NRZ
encoded

data

Manchester
encoded

data

1 0 1 1 0 0 0 1

Txd

Manchester
encoded

data Txd SFD DATA

8 bit width "ALL_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ALL_ZERO" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ZERO_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ONE_ZERO" Preamble
354
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
occurs at the middle of the second bit time. Two distinct sync patterns are used: the command
sync and the data sync. The command sync has a logic one level for one and a half bit times,
then a transition to logic zero for the second one and a half bit times. If the MODSYNC field in
the US_MR register is set to 1, the next character is a command. If it is set to 0, the next charac-
ter is a data. When direct memory access is used, the MODSYNC field can be immediately
updated with a modified character located in memory. To enable this mode, VAR_SYNC field in
US_MR register must be set to 1. In this case, the MODSYNC field in US_MR is bypassed and
the sync configuration is held in the TXSYNH in the US_THR register. The USART character for-
mat is modified and includes sync information.

Figure 29-10. Start Frame Delimiter

Drift Compensation

Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the USART_MAN register
must be set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered
as normal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock
cycles before the expected edge, then the current period is shortened by one clock cycle. If the
RXD event is between 2 and 3 clock cycles after the expected edge, then the current period is
lengthened by one clock cycle. These intervals are considered to be drift and so corrective
actions are automatically taken.

Manchester
encoded

data Txd

SFD

DATA

One bit start frame delimiter

Preamble Length
is set to 0

Manchester
encoded

data
Txd

SFD

DATA

Command Sync
start frame delimiter

Manchester
encoded

data Txd

SFD

DATA

Data Sync
start frame delimiter
355
8549A–CAP–10/08

Figure 29-11. Bit Resynchronization

29.6.3.3 Asynchronous Receiver
If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (US_MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization
mechanism only, the number of stop bits has no effect on the receiver as it considers only one
stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the
transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking
for a new start bit so that resynchronization can also be accomplished when the transmitter is
operating with one stop bit.

Figure 29-12 and Figure 29-13 illustrate start detection and character reception when USART
operates in asynchronous mode.

RXD

Oversampling
 16x Clock

Sampling
point

Expected edge

ToleranceSynchro.
Jump

Sync
JumpSynchro.

Error

Synchro.
Error
356
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 29-12. Asynchronous Start Detection

Figure 29-13. Asynchronous Character Reception

29.6.3.4 Manchester Decoder
When the MAN field in US_MR register is set to 1, the Manchester decoder is enabled. The
decoder performs both preamble and start frame delimiter detection. One input line is dedicated
to Manchester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally indepen-
dent of the emitter side. Use RX_PL in US_MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addi-
tion, the polarity of the input stream is programmable with RX_MPOL field in US_MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in US_MAN. See Figure 29-9 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled dur-
ing one quarter of a bit time at zero, a start bit is detected. See Figure 29-14.. The sample pulse
rejection mechanism applies.

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples
357
8549A–CAP–10/08

Figure 29-14. Asynchronous Start Bit Detection

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 29-15 illustrates
Manchester pattern mismatch. When incoming data stream is passed to the USART, the
receiver is also able to detect Manchester code violation. A code violation is a lack of transition
in the middle of a bit cell. In this case, MANE flag in US_CSR register is raised. It is cleared by
writing the Control Register (US_CR) with the RSTSTA bit at 1. See Figure 29-16 for an exam-
ple of Manchester error detection during data phase.

Figure 29-15. Preamble Pattern Mismatch

Figure 29-16. Manchester Error Flag

When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR

Manchester
encoded

data Txd

1 2 3 4

Sampling
Clock
(16 x)

Start
Detection

Manchester
encoded

data Txd SFD DATA

Preamble Length is set to 8

Preamble Mismatch
invalid pattern

Preamble Mismatch
Manchester coding error

Manchester
encoded

data Txd

SFD

Preamble Length
is set to 4

Elementary character bit time

Manchester
Coding Error

detected

sampling points

Preamble subpacket
and Start Frame Delimiter

were successfully
decoded

Entering USART character area
358
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
field in the US_RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to 0 if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.

As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-to-
one transition.

29.6.3.5 Radio Interface: Manchester Encoded USART Application
This section describes low data rate RF transmission systems and their integration with a Man-
chester encoded USART. These systems are based on transmitter and receiver ICs that support
ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 29-17.

Figure 29-17. Manchester Encoded Characters RF Transmission

The USART module is configured as a Manchester encoder/decoder. Looking at the down-
stream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, pre-
amble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 29-18 for an exam-
ple of ASK modulation scheme. When a logic one is sent to the ASK modulator, the power
amplifier, referred to as PA, is enabled and transmits an RF signal at downstream frequency.
When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is activated,
two different frequencies are used to transmit data. When a logic 1 is sent, the modulator out-
puts an RF signal at frequency F0 and switches to F1 if the data sent is a 0. See Figure 29-19.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver

LNA
VCO

RF filter
Demod

control
bi-dir

line

PA
RF filter

Mod
VCO

control

Manchester
decoder

Manchester
encoder

USART
Receiver

USART
Emitter

ASK/FSK
Upstream Receiver

ASK/FSK
downstream transmitter

Upstream
Emitter

Downstream
Receiver

Serial
Configuration

Interface

Fup frequency Carrier

Fdown frequency Carrier
359
8549A–CAP–10/08

switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a
user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.

Figure 29-18. ASK Modulator Output

Figure 29-19. FSK Modulator Output

29.6.3.6 Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 29-20 illustrates a character reception in synchronous mode.

Figure 29-20. Synchronous Mode Character Reception

Manchester
encoded

data
default polarity
unipolar output

Txd

ASK Modulator
Output

Uptstream Frequency F0

NRZ stream
1 0 0 1

Manchester
encoded

data
default polarity
unipolar output

Txd

FSK Modulator
Output

Uptstream Frequencies
[F0, F0+offset]

NRZ stream
1 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock
360
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.6.3.7 Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is com-
pleted while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is
transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing
the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1.

Figure 29-21. Receiver Status

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR
361
8549A–CAP–10/08

29.6.3.8 Parity
The USART supports five parity modes selected by programming the PAR field in the Mode
Register (US_MR). The PAR field also enables the Multidrop mode, see “Multidrop Mode” on
page 363. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 29-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with
the RSTSTA bit at 1. Figure 29-22 illustrates the parity bit status setting and clearing.

Table 29-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None
362
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 29-22. Parity Error

29.6.3.9 Multidrop Mode
If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x07, the
USART runs in Multidrop Mode. This mode differentiates the data characters and the address
characters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the
parity bit at 1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this
case, the next byte written to US_THR is transmitted as an address. Any character written in
US_THR without having written the command SENDA is transmitted normally with the parity at
0.

29.6.3.10 Transmitter Timeguard
The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (US_TTGR). When this field is programmed at zero no timeguard is generated. Otherwise,
the transmitter holds a high level on TXD after each transmitted byte during the number of bit
periods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 29-23, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
US_THR. TXEMPTY remains low until the timeguard transmission is completed as the time-
guard is part of the current character being transmitted.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1
363
8549A–CAP–10/08

Figure 29-23. Timeguard Operations

Table 29-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

29.6.3.11 Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an
end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed at
0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR
remains at 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO.
This counter is decremented at each bit period and reloaded each time a new character is
received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user
can either:

• Stop the counter clock until a new character is received. This is performed by writing the
Control Register (US_CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

TG = 4

Table 29-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard

Bit/sec μs ms

1 200 833 212.50

9 600 104 26.56

14400 69.4 17.71

19200 52.1 13.28

28800 34.7 8.85

33400 29.9 7.63

56000 17.9 4.55

57600 17.4 4.43

115200 8.7 2.21
364
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
on RXD before a new character is received will not provide a time-out. This prevents having
to handle an interrupt before a character is received and allows waiting for the next idle state
on RXD after a frame is received.

• Obtain an interrupt while no character is received. This is performed by writing US_CR with
the RETTO (Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts
counting down immediately from the value TO. This enables generation of a periodic interrupt
so that a user time-out can be handled, for example when no key is pressed on a keyboard.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 29-24 shows the block diagram of the Receiver Time-out feature.

Figure 29-24. Receiver Time-out Block Diagram

Table 29-8 gives the maximum time-out period for some standard baud rates.

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear

Table 29-8. Maximum Time-out Period

Baud Rate Bit Time Time-out

bit/sec μs ms

600 1 667 109 225

1 200 833 54 613

2 400 417 27 306

4 800 208 13 653

9 600 104 6 827

14400 69 4 551

19200 52 3 413

28800 35 2 276

33400 30 1 962
365
8549A–CAP–10/08

29.6.3.12 Framing Error
The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1.

Figure 29-25. Framing Error Status

29.6.3.13 Transmit Break
The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This
can be performed at any time, either while the transmitter is empty (no character in either the
Shift Register or in US_THR) or when a character is being transmitted. If a break is requested
while a character is being shifted out, the character is first completed before the TXD line is held
low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

56000 18 1 170

57600 17 1 138

200000 5 328

Table 29-8. Maximum Time-out Period (Continued)

Baud Rate Bit Time Time-out

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1
366
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the
break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable
result. All STPBRK commands requested without a previous STTBRK command are ignored. A
byte written into the Transmit Holding Register while a break is pending, but not started, is
ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 29-26 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.

Figure 29-26. Break Transmission

29.6.3.14 Receive Break
The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may
be cleared by writing the Control Register (US_CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

29.6.3.15 Hardware Handshaking
The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 29-27.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break
367
8549A–CAP–10/08

Figure 29-27. Connection with a Remote Device for Hardware Handshaking

Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 29-28 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 29-28. Receiver Behavior when Operating with Hardware Handshaking

Figure 29-29 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

Figure 29-29. Transmitter Behavior when Operating with Hardware Handshaking

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

RTS

RXBUFF

Write
US_CR

RXEN = 1

RXD

RXDIS = 1

CTS

TXD
368
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.6.4 ISO7816 Mode
The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.

29.6.4.1 ISO7816 Mode Overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see “Baud Rate Generator”
on page 347).

The USART connects to a smart card as shown in Figure 29-30. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 29-30. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
“USART Mode Register” on page 381 and “PAR: Parity Type” on page 382.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).

29.6.4.2 Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 29-31.

Smart
Card

SCK
CLK

TXD
I/O

USART
369
8549A–CAP–10/08

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 29-32. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Reg-
ister (US_SR) so that the software can handle the error.

Figure 29-31. T = 0 Protocol without Parity Error

Figure 29-32. T = 0 Protocol with Parity Error

Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of
Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading US_NER
automatically clears the NB_ERRORS field.

Receive NACK Inhibit

The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (US_MR). If INACK is at 1, no error signal is driven on the I/O
line even if a parity bit is detected, but the INACK bit is set in the Status Register (US_SR). The
INACK bit can be cleared by writing the Control Register (US_CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

Transmit Character Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetit ion is enabled by writ ing the
MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each character
can be transmitted up to eight times; the first transmission plus seven repetitions.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition
370
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (US_CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit
at 1.

Disable Successive Receive NACK

The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum
number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as
MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

29.6.4.3 Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR).

29.6.5 IrDA Mode
The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 29-33. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to
115.2 Kb/s.

The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register
(US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator
filter. The USART transmitter and receiver operate in a normal asynchronous mode and all
parameters are accessible. Note that the modulator and the demodulator are activated.

Figure 29-33. Connection to IrDA Transceivers

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter
371
8549A–CAP–10/08

29.6.5.1 IrDA Modulation
For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 29-9.

Figure 29-34 shows an example of character transmission.

Figure 29-34. IrDA Modulation

29.6.5.2 IrDA Baud Rate
Table 29-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of ±1.87% must be met.

Table 29-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

2.4 Kb/s 78.13 μs

9.6 Kb/s 19.53 μs

19.2 Kb/s 9.77 μs

38.4 Kb/s 4.88 μs

57.6 Kb/s 3.26 μs

115.2 Kb/s 1.63 μs

Bit Period Bit Period3
16

Start
Bit

Data Bits Stop
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 29-10. IrDA Baud Rate Error

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

3 686 400 115 200 2 0.00% 1.63

20 000 000 115 200 11 1.38% 1.63

32 768 000 115 200 18 1.25% 1.63

40 000 000 115 200 22 1.38% 1.63

3 686 400 57 600 4 0.00% 3.26

20 000 000 57 600 22 1.38% 3.26

32 768 000 57 600 36 1.25% 3.26

40 000 000 57 600 43 0.93% 3.26

3 686 400 38 400 6 0.00% 4.88

20 000 000 38 400 33 1.38% 4.88
372
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.6.5.3 IrDA Demodulator
The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin,
the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is
detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is
detected when the counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 29-35 illustrates the operations of the IrDA demodulator.

Figure 29-35. IrDA Demodulator Operations

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in
US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate
correctly.

32 768 000 38 400 53 0.63% 4.88

40 000 000 38 400 65 0.16% 4.88

3 686 400 19 200 12 0.00% 9.77

20 000 000 19 200 65 0.16% 9.77

32 768 000 19 200 107 0.31% 9.77

40 000 000 19 200 130 0.16% 9.77

3 686 400 9 600 24 0.00% 19.53

20 000 000 9 600 130 0.16% 19.53

32 768 000 9 600 213 0.16% 19.53

40 000 000 9 600 260 0.16% 19.53

3 686 400 2 400 96 0.00% 78.13

20 000 000 2 400 521 0.03% 78.13

32 768 000 2 400 853 0.04% 78.13

Table 29-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

MCK

RXD

Receiver
Input

Pulse
Rejected

6 5 4 3 2 6 16 5 4 3 2 0

Pulse
Accepted

Counter
Value
373
8549A–CAP–10/08

29.6.6 RS485 Mode
The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 29-36.

Figure 29-36. Typical Connection to a RS485 Bus

The USART is set in RS485 mode by programming the USART_MODE field in the Mode Regis-
ter (US_MR) to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 29-37 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 29-37. Example of RTS Drive with Timeguard

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS
374
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.6.7 Modem Mode
The USART features modem mode, which enables control of the signals: DTR (Data Terminal
Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Car-
rier Detect) and RI (Ring Indicator). While operating in modem mode, the USART behaves as a
DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change on DSR,
DCD, CTS and RI.

Setting the USART in modem mode is performed by writing the USART_MODE field in the Mode
Register (US_MR) to the value 0x3. While operating in modem mode the USART behaves as
though in asynchronous mode and all the parameter configurations are available.

Table 29-11 gives the correspondence of the USART signals with modem connection standards.

The control of the DTR output pin is performed by writing the Control Register (US_CR) with the
DTRDIS and DTREN bits respectively at 1. The disable command forces the corresponding pin
to its inactive level, i.e. high. The enable command forces the corresponding pin to its active
level, i.e. low. RTS output pin is automatically controlled in this mode

The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is
detected, the RIIC, DSRIC, DCDIC and CTSIC bits in the Channel Status Register (US_CSR)
are set respectively and can trigger an interrupt. The status is automatically cleared when
US_CSR is read. Furthermore, the CTS automatically disables the transmitter when it is
detected at its inactive state. If a character is being transmitted when the CTS rises, the charac-
ter transmission is completed before the transmitter is actually disabled.

29.6.8 Test Modes
The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

29.6.8.1 Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Table 29-11. Circuit References

USART Pin V24 CCITT Direction

TXD 2 103 From terminal to modem

RTS 4 105 From terminal to modem

DTR 20 108.2 From terminal to modem

RXD 3 104 From modem to terminal

CTS 5 106 From terminal to modem

DSR 6 107 From terminal to modem

DCD 8 109 From terminal to modem

RI 22 125 From terminal to modem
375
8549A–CAP–10/08

Figure 29-38. Normal Mode Configuration

29.6.8.2 Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 29-39. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 29-39. Automatic Echo Mode Configuration

29.6.8.3 Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 29-40. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 29-40. Local Loopback Mode Configuration

29.6.8.4 Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 29-41.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

376
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 29-41. Remote Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

1

377
8549A–CAP–10/08

29.7 USART User Interface

Table 29-12. USART Memory Map

Offset Register Name Access Reset State

0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read/Write –

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0x0

0x0014 Channel Status Register US_CSR Read-only –

0x0018 Receiver Holding Register US_RHR Read-only 0x0

0x001C Transmitter Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0

0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0

0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0

0x2C - 0x3C Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174

0x0044 Number of Errors Register US_NER Read-only –

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read/Write 0x0

0x0050 Manchester Encoder Decode Register US_MAN Read/Write 0x30011004

0x5C - 0xFC Reserved – – –

0x100 - 0x128 Reserved for PDC Registers – – –
378
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.7.1 USART Control Register
Name: US_CR

Access Type: Write-only

• RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in US_CSR.

• STTBRK: Start Break
0: No effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RTSDIS RTSEN DTRDIS DTREN

15 14 13 12 11 10 9 8

RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
379
8549A–CAP–10/08

1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been trans-
mitted. No effect if a break is already being transmitted.

• STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

• STTTO: Start Time-out
0: No effect.

1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in US_CSR.

• SENDA: Send Address
0: No effect.

1: In Multidrop Mode only, the next character written to the US_THR is sent with the address bit set.

• RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge
0: No effect

1: Resets NACK in US_CSR.

• RETTO: Rearm Time-out
0: No effect

1: Restart Time-out

• DTREN: Data Terminal Ready Enable
0: No effect.

1: Drives the pin DTR at 0.

• DTRDIS: Data Terminal Ready Disable
0: No effect.

1: Drives the pin DTR to 1.

• RTSEN: Request to Send Enable
0: No effect.

1: Drives the pin RTS to 0.

• RTSDIS: Request to Send Disable
0: No effect.

1: Drives the pin RTS to 1.
380
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.7.2 USART Mode Register
Name: US_MR

Access Type: Read/Write

• USART_MODE

• USCLKS: Clock Selection

31 30 29 28 27 26 25 24
ONEBIT MODSYNC– MAN FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16

– VAR_SYNC DSNACK INACK OVER CLKO MODE9 MSBF

15 14 13 12 11 10 9 8

CHMODE NBSTOP PAR SYNC

7 6 5 4 3 2 1 0

CHRL USCLKS USART_MODE

Table 29-13.

USART_MODE Mode of the USART

0 0 0 0 Normal

0 0 0 1 RS485

0 0 1 0 Hardware Handshaking

0 0 1 1 Modem

0 1 0 0 IS07816 Protocol: T = 0

0 1 0 1 Reserved

0 1 1 0 IS07816 Protocol: T = 1

0 1 1 1 Reserved

1 0 0 0 IrDA

1 1 x x Reserved

Table 29-14.

USCLKS Selected Clock

0 0 MCK

0 1 MCK/DIV (DIV = 8)

1 0 Reserved

1 1 SCK
381
8549A–CAP–10/08

• CHRL: Character Length.

• SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.

1: USART operates in Synchronous Mode.

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

Table 29-15.

CHRL Character Length

0 0 5 bits

0 1 6 bits

1 0 7 bits

1 1 8 bits

Table 29-16.

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Parity forced to 0 (Space)

0 1 1 Parity forced to 1 (Mark)

1 0 x No parity

1 1 x Multidrop mode

Table 29-17.

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)

0 0 1 stop bit 1 stop bit

0 1 1.5 stop bits Reserved

1 0 2 stop bits 2 stop bits

1 1 Reserved Reserved

Table 29-18.

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo. Receiver input is connected to the TXD pin.

1 0 Local Loopback. Transmitter output is connected to the Receiver Input..

1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.
382
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• MSBF: Bit Order
0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

• MODE9: 9-bit Character Length
0: CHRL defines character length.

1: 9-bit character length.

• CLKO: Clock Output Select
0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• OVER: Oversampling Mode
0: 16x Oversampling.

1: 8x Oversampling.

• INACK: Inhibit Non Acknowledge
0: The NACK is generated.

1: The NACK is not generated.

• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

• VAR_SYNC: Variable Synchronization of Command/Data Sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on SYNC value.

1: The sync field is updated when a character is written into US_THR register.

• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

• FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

• MAN: Manchester Encoder/Decoder Enable
0: Manchester Encoder/Decoder are disabled.

1: Manchester Encoder/Decoder are enabled.

• MODSYNC: Manchester Synchronization Mode
0:The Manchester Start bit is a 0 to 1 transition

1: The Manchester Start bit is a 1 to 0 transition.
383
8549A–CAP–10/08

• ONEBIT: Start Frame Delimiter Selector
0: Start Frame delimiter is COMMAND or DATA SYNC.

1: Start Frame delimiter is One Bit.

29.7.3 USART Interrupt Enable Register
Name: US_IER

Access Type: Write-only

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Transfer Interrupt Enable

• ENDTX: End of Transmit Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITERATION: Iteration Interrupt Enable

• TXBUFE: Buffer Empty Interrupt Enable

• RXBUFF: Buffer Full Interrupt Enable

• NACK: Non Acknowledge Interrupt Enable

• RIIC: Ring Indicator Input Change Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – MANE CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
384
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• DSRIC: Data Set Ready Input Change Enable

• DCDIC: Data Carrier Detect Input Change Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

• MANE: Manchester Error Interrupt Enable
0: No effect.

1: Enables the corresponding interrupt.

29.7.4 USART Interrupt Disable Register
Name: US_IDR

Access Type: Write-only

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITERATION: Iteration Interrupt Disable

• TXBUFE: Buffer Empty Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – MANE CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
385
8549A–CAP–10/08

• RXBUFF: Buffer Full Interrupt Disable

• NACK: Non Acknowledge Interrupt Disable

• RIIC: Ring Indicator Input Change Disable

• DSRIC: Data Set Ready Input Change Disable

• DCDIC: Data Carrier Detect Input Change Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

• MANE: Manchester Error Interrupt Disable
0: No effect.

1: Disables the corresponding interrupt.

29.7.5 USART Interrupt Mask Register
Name: US_IMR

Access Type: Read-only

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Transfer Interrupt Mask

• ENDTX: End of Transmit Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – MANE CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
386
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• TXEMPTY: TXEMPTY Interrupt Mask

• ITERATION: Iteration Interrupt Mask

• TXBUFE: Buffer Empty Interrupt Mask

• RXBUFF: Buffer Full Interrupt Mask

• NACK: Non Acknowledge Interrupt Mask

• RIIC: Ring Indicator Input Change Mask

• DSRIC: Data Set Ready Input Change Mask

• DCDIC: Data Carrier Detect Input Change Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

• MANE: Manchester Error Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

29.7.6 USART Channel Status Register
Name: US_CSR

Access Type: Read-only

• RXRDY: Receiver Ready
0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready
0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

31 30 29 28 27 26 25 24

– – – – – – – MANERR

23 22 21 20 19 18 17 16

CTS DCD DSR RI CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
387
8549A–CAP–10/08

• RXBRK: Break Received/End of Break
0: No Break received or End of Break detected since the last RSTSTA.

1: Break Received or End of Break detected since the last RSTSTA.

• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the Receive PDC channel is inactive.

1: The End of Transfer signal from the Receive PDC channel is active.

• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the Transmit PDC channel is inactive.

1: The End of Transfer signal from the Transmit PDC channel is active.

• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error
0: No stop bit has been detected low since the last RSTSTA.

1: At least one stop bit has been detected low since the last RSTSTA.

• PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out
0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).

• TXEMPTY: Transmitter Empty
0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

• ITERATION: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSIT.

1: Maximum number of repetitions has been reached since the last RSIT.

• TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

• RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.
388
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

• RIIC: Ring Indicator Input Change Flag
0: No input change has been detected on the RI pin since the last read of US_CSR.

1: At least one input change has been detected on the RI pin since the last read of US_CSR.

• DSRIC: Data Set Ready Input Change Flag
0: No input change has been detected on the DSR pin since the last read of US_CSR.

1: At least one input change has been detected on the DSR pin since the last read of US_CSR.

• DCDIC: Data Carrier Detect Input Change Flag
0: No input change has been detected on the DCD pin since the last read of US_CSR.

1: At least one input change has been detected on the DCD pin since the last read of US_CSR.

• CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.

• RI: Image of RI Input
0: RI is at 0.

1: RI is at 1.

• DSR: Image of DSR Input
0: DSR is at 0

1: DSR is at 1.

• DCD: Image of DCD Input
0: DCD is at 0.

1: DCD is at 1.

• CTS: Image of CTS Input
0: CTS is at 0.

1: CTS is at 1.

• MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.
389
8549A–CAP–10/08

29.7.7 USART Receive Holding Register
Name: US_RHR

Access Type: Read-only

• RXCHR: Received Character
Last character received if RXRDY is set.

• RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

29.7.8 USART Transmit Holding Register
Name: US_THR

Access Type: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

• TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0

RXCHR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXSYNH – – – – – – TXCHR

7 6 5 4 3 2 1 0

TXCHR
390
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.7.9 USART Baud Rate Generator Register
Name: US_BRGR

Access Type: Read/Write

• CD: Clock Divider

• FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – FP

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

Table 29-19.

CD

USART_MODE ≠ ISO7816
USART_MODE =

ISO7816
SYNC = 0 SYNC = 1

OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
Baud Rate =

Selected Clock/16/CD

Baud Rate =

Selected Clock/8/CD

Baud Rate =

Selected Clock /CD
Baud Rate = Selected
Clock/CD/FI_DI_RATIO
391
8549A–CAP–10/08

29.7.10 USART Receiver Time-out Register
Name: US_RTOR

Access Type: Read/Write

• TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

29.7.11 USART Transmitter Timeguard Register
Name: US_TTGR

Access Type: Read/Write

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TO

7 6 5 4 3 2 1 0

TO

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TG
392
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
29.7.12 USART FI DI RATIO Register
Name: US_FIDI

Access Type: Read/Write

Reset Value : 0x174

• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 - 2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

29.7.13 USART Number of Errors Register
Name: US_NER

Access Type: Read-only

• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0
FI_DI_RATIO

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

NB_ERRORS
393
8549A–CAP–10/08

29.7.14 USART Manchester Configuration Register
Name: US_MAN

Access Type: Read/Write

• TX_PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled

1 - 15: The Preamble Length is TX_PL x Bit Period

• TX_PP: Transmitter Preamble Pattern

• TX_MPOL: Transmitter Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

• RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled

1 - 15: The detected preamble length is RX_PL x Bit Period

• RX_PP: Receiver Preamble Pattern detected

31 30 29 28 27 26 25 24
– DRIFT – RX_MPOL – – RX_PP

23 22 21 20 19 18 17 16

– – – – RX_PL

15 14 13 12 11 10 9 8

– – – TX_MPOL – – TX_PP

7 6 5 4 3 2 1 0

– – – – TX_PL

Table 29-20.

TX_PP Preamble Pattern default polarity assumed (TX_MPOL field not set)

0 0 ALL_ONE

0 1 ALL_ZERO

1 0 ZERO_ONE

1 1 ONE_ZERO

Table 29-21.

RX_PP Preamble Pattern default polarity assumed (RX_MPOL field not set)

0 0 ALL_ONE

0 1 ALL_ZERO

1 0 ZERO_ONE

1 1 ONE_ZERO
394
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• RX_MPOL: Receiver Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

• DRIFT: Drift compensation
0: The USART can not recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

29.7.15 USART IrDA FILTER Register
Name: US_IF

Access Type: Read/Write

• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

IRDA_FILTER
395
8549A–CAP–10/08

396
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30. Timer/Counter (TC)

30.1 Description
The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel can be independently programmed to perform a wide range of functions including
frequency measurement, event counting, interval measurement, pulse generation, delay timing
and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal inter-
rupt signal which can be programmed to generate processor interrupts.

The Timer Counter block has two global registers which act upon all three TC channels.

The Block Control Register allows the three channels to be started simultaneously with the same
instruction.

The Block Mode Register defines the external clock inputs for each channel, allowing them to be
chained.

Table 30-1 gives the assignment of the device Timer Counter clock inputs common to Timer
Counter 0 to 2

Table 30-1. Timer Counter Clock Assignment

Name Definition

TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5 SCLK
397
8549A–CAP–10/08

30.2 Block Diagram

Figure 30-1. Timer Counter Block Diagram

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Advanced
Interrupt

Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

Table 30-2. Signal Name Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output

TIOB
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output

INT Interrupt Signal Output

SYNC Synchronization Input Signal
398
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.3 Pin Name List

30.4 Product Dependencies

30.4.1 I/O Lines
The pins used for interfacing the compliant external devices are multiplexed with PIO lines. The
programmer must first program the PIOA controller to select the appropriate TC alternate
functions.

30.4.2 Power Management
The TC is clocked through the Power Management Controller (PMC), thus the programmer must
first configure the PMC to enable the Timer Counter clock.

30.4.3 Interrupt
The TC has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the
TC interrupt requires programming the AIC before configuring the TC.

Table 30-3. TC pin list

Pin Name Description Type

TCLK0-TCLK2 External Clock Input Input

TIOA0-TIOA2 I/O Line A I/O

TIOB0-TIOB2 I/O Line B I/O
399
8549A–CAP–10/08

30.5 Functional Description

30.5.1 TC Description
The three channels of the Timer Counter are independent and identical in operation. The regis-
ters for channel programming are listed in Table 30-5 on page 413.

30.5.2 16-bit Counter
Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF and
passes to 0x0000, an overflow occurs and the COVFS bit in TC_SR (Status Register) is set.

The current value of the counter is accessible in real time by reading the Counter Value Regis-
ter, TC_CV. The counter can be reset by a trigger. In this case, the counter value passes to
0x0000 on the next valid edge of the selected clock.

30.5.3 Clock Selection
At block level, input clock signals of each channel can either be connected to the external inputs
TCLK0, TCLK1 or TCLK2, or be connected to the internal I/O signals TIOA0, TIOA1 or TIOA2
for chaining by programming the TC_BMR (Block Mode). See Figure 30-2 on page 401.

Each channel can independently select an internal or external clock source for its counter:

• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5

• External clock signals: XC0, XC1 or XC2

This selection is made by the TCCLKS bits in the TC Channel Mode Register.

The selected clock can be inverted with the CLKI bit in TC_CMR. This allows counting on the
opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST
parameter in the Mode Register defines this signal (none, XC0, XC1, XC2). See Figure 30-3 on
page 401

Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the
master clock period. The external clock frequency must be at least 2.5 times lower than the mas-
ter clock
400
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 30-2. Clock Chaining Selection

Figure 30-3. Clock Selection

Timer/Counter
Channel 0

SYNC

TC0XC0S

TIOA0

TIOB0

XC0

XC1 = TCLK1

XC2 = TCLK2

TCLK0
TIOA1

TIOA2

Timer/Counter
Channel 1

SYNC

TC1XC1S

TIOA1

TIOB1

XC0 = TCLK2

XC1

XC2 = TCLK2

TCLK1
TIOA0

TIOA2

Timer/Counter
Channel 2

SYNC

TC2XC2S

TIOA2

TIOB2

XC0 = TCLK0

XC1 = TCLK1

XC2

TCLK2
TIOA0

TIOA1

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI

BURST

1

Selected
Clock
401
8549A–CAP–10/08

30.5.4 Clock Control
The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 30-4.

• The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS
commands in the Control Register. In Capture Mode it can be disabled by an RB load event if
LDBDIS is set to 1 in TC_CMR. In Waveform Mode, it can be disabled by an RC Compare
event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop actions have no
effect: only a CLKEN command in the Control Register can re-enable the clock. When the
clock is enabled, the CLKSTA bit is set in the Status Register.

• The clock can also be started or stopped: a trigger (software, synchro, external or compare)
always starts the clock. The clock can be stopped by an RB load event in Capture Mode
(LDBSTOP = 1 in TC_CMR) or a RC compare event in Waveform Mode (CPCSTOP = 1 in
TC_CMR). The start and the stop commands have effect only if the clock is enabled.

Figure 30-4. Clock Control

30.5.5 TC Operating Modes
Each channel can independently operate in two different modes:

• Capture Mode provides measurement on signals.

• Waveform Mode provides wave generation.

The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.

In Capture Mode, TIOA and TIOB are configured as inputs.

In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.

30.5.6 Trigger
A trigger resets the counter and starts the counter clock. Three types of triggers are common to
both modes, and a fourth external trigger is available to each mode.

The following triggers are common to both modes:

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
EventCounter

Clock

Selected
Clock Trigger
402
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• Software Trigger: Each channel has a software trigger, available by setting SWTRG in
TC_CCR.

• SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the
same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing TC_BCR (Block Control) with SYNC set.

• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the
counter value matches the RC value if CPCTRG is set in TC_CMR.

The channel can also be configured to have an external trigger. In Capture Mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event
can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external
event can then be programmed to perform a trigger by setting ENETRG in TC_CMR.

If an external trigger is used, the duration of the pulses must be longer than the master clock
period in order to be detected.

Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.

30.5.7 Capture Operating Mode
This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register).

Capture Mode allows the TC channel to perform measurements such as pulse timing, fre-
quency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.

Figure 30-5 shows the configuration of the TC channel when programmed in Capture Mode.

30.5.8 Capture Registers A and B
Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.

The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the
LDRB parameter defines the TIOA edge for the loading of Register B.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS)
in TC_SR (Status Register). In this case, the old value is overwritten.

30.5.9 Trigger Conditions
In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trig-
ger can be defined.

The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The
ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an external
trigger. If ETRGEDG = 0 (none), the external trigger is disabled.
403
8549A–CAP–10/08

Figure 30-5. Capture Mode

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

E
N

C
LK

D
IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
C

C
ap

tu
re

R

eg
is

te
r

A

C
ap

tu
re

R

eg
is

te
r

B
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

A
B

E
T

R
G

S
W

T
R

G

E
T

R
G

E
D

G
C

P
C

T
R

G

TC1_IMR

Tr
ig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

S
Y

N
C

1

M
T

IO
B

T
IO

A

M
T

IO
A

LD
R

A

LD
B

S
TO

P

If
R

A
 is

 n
ot

 lo
ad

ed
or

 R
B

 is
 L

oa
de

d
If

R
A

 is
 L

oa
de

d

LD
B

D
IS

CPCS

IN
T

E
dg

e
D

et
ec

to
r

E
dg

e
D

et
ec

to
r

LD
R

B

E
dg

e
D

et
ec

to
r

C
LK

O
V

F

R
E

S
E

T

T
im

er
/C

ou
nt

er
 C

ha
nn

el
404
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.5.10 Waveform Operating Mode
Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel
Mode Register).

In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same fre-
quency and independently programmable duty cycles, or generates different types of one-shot
or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event (EEVT parameter in TC_CMR).

Figure 30-6 shows the configuration of the TC channel when programmed in Waveform Operat-
ing Mode.

30.5.11 Waveform Selection
Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of
TC_CV varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output
(if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.
405
8549A–CAP–10/08

Figure 30-6. Waveform Mode

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

E
N

C
LK

D
IS

C
P

C
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
A

R
eg

is
te

r
B

R
eg

is
te

r
C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

 =

C
om

pa
re

 R
C

 =

C
P

C
S

TO
P

16
-b

it
C

ou
nt

er

E
E

V
T

E
E

V
T

E
D

G

S
Y

N
C

S
W

T
R

G

E
N

E
T

R
G

W
A

V
S

E
L

TC1_IMR

Tr
ig

A
C

P
C

A
C

PA

A
E

E
V

T

A
S

W
T

R
G

B
C

P
C

B
C

P
B

B
E

E
V

T

B
S

W
T

R
G

T
IO

A

M
T

IO
A

T
IO

B

M
T

IO
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS

C
LK

O
V

F
R

E
S

E
T

Output Controller Output Controller

IN
T

1

E
dg

e
D

et
ec

to
r

T
im

er
/C

ou
nt

er
 C

ha
nn

el

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

W
A

V
S

E
L

406
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.5.11.1 WAVSEL = 00
When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF has
been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle
continues. See Figure 30-7.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to
note that the trigger may occur at any time. See Figure 30-8.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the
counter clock (CPCDIS = 1 in TC_CMR).

Figure 30-7. WAVSEL= 00 without trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples
407
8549A–CAP–10/08

Figure 30-8. WAVSEL= 00 with trigger

30.5.11.2 WAVSEL = 10
When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then auto-
matically reset on a RC Compare. Once the value of TC_CV has been reset, it is then
incremented and so on. See Figure 30-9.

It is important to note that TC_CV can be reset at any time by an external event or a software
trigger if both are programmed correctly. See Figure 30-10.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable
the counter clock (CPCDIS = 1 in TC_CMR).

Figure 30-9. WAVSEL = 10 Without Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples
408
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 30-10. WAVSEL = 10 With Trigger

30.5.11.3 WAVSEL = 01
When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is
reached, the value of TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on.
See Figure 30-11.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trig-
ger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 30-12.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the
counter clock (CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Counter cleared by trigger
409
8549A–CAP–10/08

Figure 30-11. WAVSEL = 01 Without Trigger

Figure 30-12. WAVSEL = 01 With Trigger

30.5.11.4 WAVSEL = 11
When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the
value of TC_CV is decremented to 0, then re-incremented to RC and so on. See Figure 30-13.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trig-
ger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 30-14.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA
410
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 30-13. WAVSEL = 11 Without Trigger

Figure 30-14. WAVSEL = 11 With Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA
411
8549A–CAP–10/08

30.5.12 External Event/Trigger Conditions
An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.

The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines
the trigger edge for each of the possible external triggers (rising, falling or both). If EEVTEDG is
cleared (none), no external event is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output
and the compare register B is not used to generate waveforms and subsequently no IRQs. In
this case the TC channel can only generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in
TC_CMR.

As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC
Compare can also be used as a trigger depending on the parameter WAVSEL.

30.5.13 Output Controller
The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare.
RA compare controls TIOA and RB compare controls TIOB. Each of these events can be pro-
grammed to set, clear or toggle the output as defined in the corresponding parameter in
TC_CMR.
412
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.6 Timer Counter (TC) User Interface

TC_BCR (Block Control Register) and TC_BMR (Block Mode Register) control the whole TC
block. TC channels are controlled by the registers listed in Table 30-5. The offset of each of the
channel registers in Table 30-5 is in relation to the offset of the corresponding channel as men-
tioned in Table 30-5.

Notes: 1. Read-only if WAVE = 0

Table 30-4. TC Global Memory Map

Offset Channel/Register Name Access Reset Value

0x00 TC Channel 0 See Table 30-5

0x40 TC Channel 1 See Table 30-5

0x80 TC Channel 2 See Table 30-5

0xC0 TC Block Control Register TC_BCR Write-only –

0xC4 TC Block Mode Register TC_BMR Read/Write 0

Table 30-5. TC Channel Memory Map

Offset Register Name Access Reset Value

0x00 Channel Control Register TC_CCR Write-only –

0x04 Channel Mode Register TC_CMR Read/Write 0

0x08 Reserved –

0x0C Reserved –

0x10 Counter Value TC_CV Read-only 0

0x14 Register A TC_RA Read/Write(1) 0

0x18 Register B TC_RB Read/Write(1) 0

0x1C Register C TC_RC Read/Write 0

0x20 Status Register TC_SR Read-only 0

0x24 Interrupt Enable Register TC_IER Write-only –

0x28 Interrupt Disable Register TC_IDR Write-only –

0x2C Interrupt Mask Register TC_IMR Read-only 0

 0xFC Reserved – – –
413
8549A–CAP–10/08

30.6.1 TC Block Control Register
Register Name: TC_BCR

Access Type: Write-only

• SYNC: Synchro Command

0 = No effect.

1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

30.6.2 TC Block Mode Register
Register Name: TC_BMR

Access Type: Read/Write

• TC0XC0S: External Clock Signal 0 Selection

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SYNC

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TC2XC2S TCXC1S TC0XC0S

TC0XC0S Signal Connected to XC0

0 0 TCLK0

0 1 none

1 0 TIOA1

1 1 TIOA2
414
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• TC1XC1S: External Clock Signal 1 Selection

• TC2XC2S: External Clock Signal 2 Selection

30.6.3 TC Channel Control Register
Register Name: TC_CCR

Access Type: Write-only

• CLKEN: Counter Clock Enable Command

0 = No effect.

1 = Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command

0 = No effect.

1 = Disables the clock.

• SWTRG: Software Trigger Command

0 = No effect.

1 = A software trigger is performed: the counter is reset and the clock is started.

TC1XC1S Signal Connected to XC1

0 0 TCLK1

0 1 none

1 0 TIOA0

1 1 TIOA2

TC2XC2S Signal Connected to XC2

0 0 TCLK2

0 1 none

1 0 TIOA0

1 1 TIOA1

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – SWTRG CLKDIS CLKEN
415
8549A–CAP–10/08

30.6.4 TC Channel Mode Register: Capture Mode
Register Name: TC_CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• LDBSTOP: Counter Clock Stopped with RB Loading

0 = Counter clock is not stopped when RB loading occurs.

1 = Counter clock is stopped when RB loading occurs.

• LDBDIS: Counter Clock Disable with RB Loading

0 = Counter clock is not disabled when RB loading occurs.

1 = Counter clock is disabled when RB loading occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – LDRB LDRA

15 14 13 12 11 10 9 8

WAVE = 0 CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0

LDBDIS LDBSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.
416
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOA or TIOB External Trigger Selection

0 = TIOB is used as an external trigger.

1 = TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0 = RC Compare has no effect on the counter and its clock.

1 = RC Compare resets the counter and starts the counter clock.

• WAVE

0 = Capture Mode is enabled.

1 = Capture Mode is disabled (Waveform Mode is enabled).

• LDRA: RA Loading Selection

• LDRB: RB Loading Selection

ETRGEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

LDRA Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

LDRB Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA
417
8549A–CAP–10/08

30.6.5 TC Channel Mode Register: Waveform Mode
Register Name: TC_CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• CPCSTOP: Counter Clock Stopped with RC Compare

0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

31 30 29 28 27 26 25 24

BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16

ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8

WAVE = 1 WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0

CPCDIS CPCSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.
418
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subse-
quently no IRQs.

• ENETRG: External Event Trigger Enable

0 = The external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.

1 = The external event resets the counter and starts the counter clock.

• WAVSEL: Waveform Selection

• WAVE = 1

0 = Waveform Mode is disabled (Capture Mode is enabled).

1 = Waveform Mode is enabled.

• ACPA: RA Compare Effect on TIOA

EEVTEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

EEVT Signal selected as external event TIOB Direction

0 0 TIOB input (1)

0 1 XC0 output

1 0 XC1 output

1 1 XC2 output

WAVSEL Effect

0 0 UP mode without automatic trigger on RC Compare

1 0 UP mode with automatic trigger on RC Compare

0 1 UPDOWN mode without automatic trigger on RC Compare

1 1 UPDOWN mode with automatic trigger on RC Compare

ACPA Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle
419
8549A–CAP–10/08

• ACPC: RC Compare Effect on TIOA

• AEEVT: External Event Effect on TIOA

• ASWTRG: Software Trigger Effect on TIOA

• BCPB: RB Compare Effect on TIOB

• BCPC: RC Compare Effect on TIOB

ACPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

AEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

ASWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPB Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle
420
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• BEEVT: External Event Effect on TIOB

• BSWTRG: Software Trigger Effect on TIOB

30.6.6 TC Counter Value Register
Register Name: TC_CV

Access Type: Read-only

• CV: Counter Value

CV contains the counter value in real time.

BEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BSWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV
421
8549A–CAP–10/08

30.6.7 TC Register A
Register Name: TC_RA

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RA: Register A

RA contains the Register A value in real time.

30.6.8 TC Register B
Register Name: TC_RB

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RB: Register B

RB contains the Register B value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RA

7 6 5 4 3 2 1 0

RA

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RB

7 6 5 4 3 2 1 0

RB
422
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.6.9 TC Register C
Register Name: TC_RC

Access Type: Read/Write

• RC: Register C

RC contains the Register C value in real time.

30.6.10 TC Status Register
Register Name: TC_SR

Access Type: Read-only

• COVFS: Counter Overflow Status

0 = No counter overflow has occurred since the last read of the Status Register.

1 = A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status

0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Sta-
tus Register, if WAVE = 0.

• CPAS: RA Compare Status

0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPBS: RB Compare Status

0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RC

7 6 5 4 3 2 1 0

RC

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
423
8549A–CAP–10/08

• CPCS: RC Compare Status

0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status

0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

• LDRBS: RB Loading Status

0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

• ETRGS: External Trigger Status

0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status

0 = Clock is disabled.

1 = Clock is enabled.

• MTIOA: TIOA Mirror
0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.

1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror

0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.

1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.
424
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.6.11 TC Interrupt Enable Register
Register Name: TC_IER

Access Type: Write-only

• COVFS: Counter Overflow

0 = No effect.

1 = Enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Enables the Load Overrun Interrupt.

• CPAS: RA Compare

0 = No effect.

1 = Enables the RA Compare Interrupt.

• CPBS: RB Compare

0 = No effect.

1 = Enables the RB Compare Interrupt.

• CPCS: RC Compare

0 = No effect.

1 = Enables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Enables the RA Load Interrupt.

• LDRBS: RB Loading

0 = No effect.

1 = Enables the RB Load Interrupt.

• ETRGS: External Trigger

0 = No effect.

1 = Enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
425
8549A–CAP–10/08

30.6.12 TC Interrupt Disable Register
Register Name: TC_IDR

Access Type: Write-only

• COVFS: Counter Overflow

0 = No effect.

1 = Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Disables the Load Overrun Interrupt (if WAVE = 0).

• CPAS: RA Compare

0 = No effect.

1 = Disables the RA Compare Interrupt (if WAVE = 1).

• CPBS: RB Compare

0 = No effect.

1 = Disables the RB Compare Interrupt (if WAVE = 1).

• CPCS: RC Compare

0 = No effect.

1 = Disables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Disables the RA Load Interrupt (if WAVE = 0).

• LDRBS: RB Loading

0 = No effect.

1 = Disables the RB Load Interrupt (if WAVE = 0).

• ETRGS: External Trigger

0 = No effect.

1 = Disables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
426
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.6.13 TC Interrupt Mask Register
Register Name: TC_IMR

Access Type: Read-only

• COVFS: Counter Overflow

0 = The Counter Overflow Interrupt is disabled.

1 = The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun

0 = The Load Overrun Interrupt is disabled.

1 = The Load Overrun Interrupt is enabled.

• CPAS: RA Compare

0 = The RA Compare Interrupt is disabled.

1 = The RA Compare Interrupt is enabled.

• CPBS: RB Compare

0 = The RB Compare Interrupt is disabled.

1 = The RB Compare Interrupt is enabled.

• CPCS: RC Compare

0 = The RC Compare Interrupt is disabled.

1 = The RC Compare Interrupt is enabled.

• LDRAS: RA Loading

0 = The Load RA Interrupt is disabled.

1 = The Load RA Interrupt is enabled.

• LDRBS: RB Loading

0 = The Load RB Interrupt is disabled.

1 = The Load RB Interrupt is enabled.

• ETRGS: External Trigger

0 = The External Trigger Interrupt is disabled.

1 = The External Trigger Interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
427
8549A–CAP–10/08

428
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31. USB Device Port (UDP)

31.1 Description
The USB Device Port (UDP) is compliant with the Universal Serial Bus (USB) V2.0 full-speed
device specification.

Each endpoint can be configured in one of several USB transfer types. It can be associated with
one or two banks of a dual-port RAM used to store the current data payload. If two banks are
used, one DPR bank is read or written by the processor, while the other is read or written by the
USB device peripheral. This feature is mandatory for isochronous endpoints. Thus the device
maintains the maximum bandwidth (1M bytes/s) by working with endpoints with two banks of
DPR.

Suspend and resume are automatically detected by the USB device, which notifies the proces-
sor by raising an interrupt. Depending on the product, an external signal can be used to send a
wake up to the USB host controller.

Table 31-1. USB Endpoint Description

Endpoint Number Mnemonic Dual-Bank Max. Endpoint Size Endpoint Type

0 EP0 No 8 Control/Bulk/Interrupt

1 EP1 Yes 64 Bulk/Iso/Interrupt

2 EP2 Yes 64 Bulk/Iso/Interrupt

3 EP3 No 64 Control/Bulk/Interrupt

4 EP4 Yes 256 Bulk/Iso/Interrupt

5 EP5 Yes 256 Bulk/Iso/Interrupt
429
8549A–CAP–10/08

31.2 Block Diagram

Figure 31-1. Block Diagram

Access to the UDP is via the APB bus interface. Read and write to the data FIFO are done by
reading and writing 8-bit values to APB registers.

The UDP peripheral requires two clocks: one peripheral clock used by the MCK domain and a
48 MHz clock used by the 12 MHz domain.

A USB 2.0 full-speed pad is embedded and controlled by the Serial Interface Engine (SIE).

The signal external_resume is optional. It allows the UDP peripheral to wake up once in system
mode. The host is then notified that the device asks for a resume. This optional feature must be
also negotiated with the host during the enumeration.

Atmel Bridge

12 MHz

Suspend/Resume Logic

W
r
a
p
p
e
r

W
r
a
p
p
e
r

U
s
e
r

I
n
t
e
r
f
a
c
e

Serial
Interface
Engine

SIE

MCK

Master Clock
Domain

Dual
Port
RAM

FIFO

UDPCK

Recovered 12 MHz
Domain

udp_int

USB Device

Embedded
USB

Transceiver

DP

DM

external_resume

APB
to

MCU
Bus

txoen

eopn

txd

rxdm

rxd

rxdp
430
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.3 Product Dependencies
For further details on the USB Device hardware implementation, see the specific Product Prop-
erties document.

The USB physical transceiver is integrated into the product. The bidirectional differential signals
DP and DM are available from the product boundary.

One I/O line may be used by the application to check that VBUS is still available from the host.
Self-powered devices may use this entry to be notified that the host has been powered off. In
this case, the pullup on DP must be disabled in order to prevent feeding current to the host. The
application should disconnect the transceiver, then remove the pullup.

31.3.1 I/O Lines
DP and DM are not controlled by any PIO controllers. The embedded USB physical transceiver
is controlled by the USB device peripheral.

To reserve an I/O line to check VBUS, the programmer must first program the PIO controller to
assign this I/O in input PIO mode.

31.3.2 Power Management
The USB device peripheral requires a 48 MHz clock. This clock must be generated by a PLL
with an accuracy of ± 0.25%.

Thus, the USB device receives two clocks from the Power Management Controller (PMC): the
master clock, MCK, used to drive the peripheral user interface, and the UDPCK, used to inter-
face with the bus USB signals (recovered 12 MHz domain).

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be
enabled before any read/write operations to the UDP registers including the UDP_TXVC
register.

31.3.3 Interrupt
The USB device interface has an interrupt line connected to the Advanced Interrupt Controller
(AIC).

Handling the USB device interrupt requires programming the AIC before configuring the UDP.
431
8549A–CAP–10/08

31.4 Typical Connection

Figure 31-2. Board Schematic to Interface Device Peripheral

31.4.1 USB Device Transceiver
The USB device transceiver is embedded in the product. A few discrete components are
required as follows:

• the application detects all device states as defined in chapter 9 of the USB specification;

– VBUS monitoring

• to reduce power consumption the host is disconnected

• for line termination.

31.4.2 VBUS Monitoring
VBUS monitoring is required to detect host connection. VBUS monitoring is done using a stan-
dard PIO with internal pullup disabled. When the host is switched off, it should be considered as
a disconnect, the pullup must be disabled in order to prevent powering the host through the pull-
up resistor.

When the host is disconnected and the transceiver is enabled, then DDP and DDM are floating.
This may lead to over consumption. A solution is to connect 330 KΩ pulldowns on DP and DM.
These pulldowns do not alter DDP and DDM signal integrity.

A termination serial resistor must be connected to DP and DM. The resistor value is defined in
the electrical specification of the product (REXT).

REXT

REXT

DDM

DDP

PIO
27 K

47 K

330 K

Type B
Connector

12

3 4

5V Bus Monitoring

330 K
432
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.5 Functional Description

31.5.1 USB V2.0 Full-speed Introduction
The USB V2.0 full-speed provides communication services between host and attached USB
devices. Each device is offered with a collection of communication flows (pipes) associated with
each endpoint. Software on the host communicates with a USB device through a set of commu-
nication flows.

Figure 31-3. Example of USB V2.0 Full-speed Communication Control

The Control Transfer endpoint EP0 is always used when a USB device is first configured (USB v. 2.0 specifications).

31.5.1.1 USB V2.0 Full-speed Transfer Types
A communication flow is carried over one of four transfer types defined by the USB device.

31.5.1.2 USB Bus Transactions
Each transfer results in one or more transactions over the USB bus. There are three kinds of
transactions flowing across the bus in packets:

EP0

USB Host V2.0

Software Client 1 Software Client 2

Data Flow: Bulk Out Transfer

Data Flow: Bulk In Transfer

Data Flow: Control Transfer

Data Flow: Control Transfer

EP1

EP2

USB Device 2.0
Block 1

USB Device 2.0
Block 2

EP5

EP4

EP0

Data Flow: Isochronous In Transfer

Data Flow: Isochronous Out Transfer

USB Device endpoint configuration requires that
in the first instance Control Transfer must be EP0.

Table 31-2. USB Communication Flow

Transfer Direction Bandwidth Supported Endpoint Size Error Detection Retrying

Control Bidirectional Not guaranteed 8, 16, 32, 64 Yes Automatic

Isochronous Unidirectional Guaranteed 256 Yes No

Interrupt Unidirectional Not guaranteed ≤ 64 Yes Yes

Bulk Unidirectional Not guaranteed 8, 16, 32, 64 Yes Yes
433
8549A–CAP–10/08

1. Setup Transaction

2. Data IN Transaction

3. Data OUT Transaction

31.5.1.3 USB Transfer Event Definitions
As indicated below, transfers are sequential events carried out on the USB bus.

Notes: 1. Control transfer must use endpoints with no ping-pong attributes.
2. Isochronous transfers must use endpoints with ping-pong attributes.
3. Control transfers can be aborted using a stall handshake.

A status transaction is a special type of host-to-device transaction used only in a control transfer.
The control transfer must be performed using endpoints with no ping-pong attributes. According
to the control sequence (read or write), the USB device sends or receives a status transaction.

Table 31-3. USB Transfer Events

Control Transfers(1) (3)

• Setup transaction > Data IN transactions > Status
OUT transaction

• Setup transaction > Data OUT transactions > Status
IN transaction

• Setup transaction > Status IN transaction

Interrupt IN Transfer

(device toward host)

• Data IN transaction > Data IN transaction

Interrupt OUT Transfer

(host toward device)

• Data OUT transaction > Data OUT transaction

Isochronous IN Transfer(2)

(device toward host)

• Data IN transaction > Data IN transaction

Isochronous OUT Transfer(2)

(host toward device)

• Data OUT transaction > Data OUT transaction

Bulk IN Transfer

(device toward host)

• Data IN transaction > Data IN transaction

Bulk OUT Transfer

(host toward device)

• Data OUT transaction > Data OUT transaction
434
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 31-4. Control Read and Write Sequences

Notes: 1. During the Status IN stage, the host waits for a zero length packet (Data IN transaction with no data) from the device using
DATA1 PID. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0, for more information on the protocol
layer.

2. During the Status OUT stage, the host emits a zero length packet to the device (Data OUT transaction with no data).

31.5.2 Handling Transactions with USB V2.0 Device Peripheral

31.5.2.1 Setup Transaction
Setup is a special type of host-to-device transaction used during control transfers. Control trans-
fers must be performed using endpoints with no ping-pong attributes. A setup transaction needs
to be handled as soon as possible by the firmware. It is used to transmit requests from the host
to the device. These requests are then handled by the USB device and may require more argu-
ments. The arguments are sent to the device by a Data OUT transaction which follows the setup
transaction. These requests may also return data. The data is carried out to the host by the next
Data IN transaction which follows the setup transaction. A status transaction ends the control
transfer.

When a setup transfer is received by the USB endpoint:

• The USB device automatically acknowledges the setup packet
• RXSETUP is set in the UDP_ CSRx register
• An endpoint interrupt is generated while the RXSETUP is not cleared. This interrupt is carried

out to the microcontroller if interrupts are enabled for this endpoint.

Thus, firmware must detect the RXSETUP polling the UDP_ CSRx or catching an interrupt, read
the setup packet in the FIFO, then clear the RXSETUP. RXSETUP cannot be cleared before the
setup packet has been read in the FIFO. Otherwise, the USB device would accept the next Data
OUT transfer and overwrite the setup packet in the FIFO.

Control Read Setup TX Data OUT TX Data OUT TX

Data Stage

Control Write

Setup Stage

Setup Stage

Setup TX

Setup TX
No Data
Control

Data IN TX Data IN TX

Status Stage

Status Stage

Status IN TX

Status OUT TX

Status IN TX

Data Stage

Setup Stage Status Stage
435
8549A–CAP–10/08

Figure 31-5. Setup Transaction Followed by a Data OUT Transaction

31.5.2.2 Data IN Transaction
Data IN transactions are used in control, isochronous, bulk and interrupt transfers and conduct
the transfer of data from the device to the host. Data IN transactions in isochronous transfer
must be done using endpoints with ping-pong attributes.

Using Endpoints Without Ping-pong Attributes

To perform a Data IN transaction using a non ping-pong endpoint:

1. The application checks if it is possible to write in the FIFO by polling TXPKTRDY in the
endpoint’s UDP_ CSRx register (TXPKTRDY must be cleared).

2. The application writes the first packet of data to be sent in the endpoint’s FIFO, writing
zero or more byte values in the endpoint’s UDP_ FDRx register,

3. The application notifies the USB peripheral it has finished by setting the TXPKTRDY in
the endpoint’s UDP_ CSRx register.

4. The application is notified that the endpoint’s FIFO has been released by the USB
device when TXCOMP in the endpoint’s UDP_ CSRx register has been set. Then an
interrupt for the corresponding endpoint is pending while TXCOMP is set.

5. The microcontroller writes the second packet of data to be sent in the endpoint’s FIFO,
writing zero or more byte values in the endpoint’s UDP_ FDRx register,

6. The microcontroller notifies the USB peripheral it has finished by setting the TXPK-
TRDY in the endpoint’s UDP_ CSRx register.

7. The application clears the TXCOMP in the endpoint’s UDP_ CSRx.

After the last packet has been sent, the application must clear TXCOMP once this has been set.

TXCOMP is set by the USB device when it has received an ACK PID signal for the Data IN
packet. An interrupt is pending while TXCOMP is set.

Warning: TX_COMP must be cleared after TX_PKTRDY has been set.

Note: Refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0, for more information on the
Data IN protocol layer.

RX_Data_BKO
(UDP_CSRx)

ACK
PIDData OUTData OUT

PID
NAK
PID

ACK
PIDData SetupSetup

PID
USB
Bus Packets

RXSETUP Flag

Set by USB Device Cleared by Firmware
Set by USB
Device Peripheral

FIFO (DPR)
Content

Data Setup DataXX XX OUT

Interrupt Pending

Setup Received Setup Handled by Firmware Data Out Received

Data OUTData OUT
PID
436
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 31-6. Data IN Transfer for Non Ping-pong Endpoint

Using Endpoints With Ping-pong Attribute

The use of an endpoint with ping-pong attributes is necessary during isochronous transfer. This
also allows handling the maximum bandwidth defined in the USB specification during bulk trans-
fer. To be able to guarantee a constant or the maximum bandwidth, the microcontroller must
prepare the next data payload to be sent while the current one is being sent by the USB device.
Thus two banks of memory are used. While one is available for the microcontroller, the other
one is locked by the USB device.

Figure 31-7. Bank Swapping Data IN Transfer for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data IN
transactions:

USB Bus Packets Data IN 2Data IN NAKACKData IN 1

FIFO (DPR)
Content Data IN 2?Load In Progress?Data IN 1

Cleared by Firmware

DPR access by the firmware

Payload in FIFO
TXCOMP Flag
(UDP_CSRx)

TXPKTRDY Flag
(UDP_CSRx)

PID
Data IN Data IN

PIDPID PIDPID
ACK
PID

Prevous Data IN TX Microcontroller Load Data in FIFO Data is Sent on USB Bus

Interrupt
Pending

Interrupt Pending

Set by the firmware Set by the firmware

Cleared by
Firmware

Cleared by HwCleared by Hw

DPR access by the hardware

?

USB Device USB Bus

ReadWrite

Read and Write at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1
437
8549A–CAP–10/08

1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY to
be cleared in the endpoint’s UDP_ CSRx register.

2. The microcontroller writes the first data payload to be sent in the FIFO (Bank 0), writing
zero or more byte values in the endpoint’s UDP_ FDRx register.

3. The microcontroller notifies the USB peripheral it has finished writing in Bank 0 of the
FIFO by setting the TXPKTRDY in the endpoint’s UDP_ CSRx register.

4. Without waiting for TXPKTRDY to be cleared, the microcontroller writes the second
data payload to be sent in the FIFO (Bank 1), writing zero or more byte values in the
endpoint’s UDP_ FDRx register.

5. The microcontroller is notified that the first Bank has been released by the USB device
when TXCOMP in the endpoint’s UDP_ CSRx register is set. An interrupt is pending
while TXCOMP is being set.

6. Once the microcontroller has received TXCOMP for the first Bank, it notifies the USB
device that it has prepared the second Bank to be sent rising TXPKTRDY in the end-
point’s UDP_ CSRx register.

7. At this step, Bank 0 is available and the microcontroller can prepare a third data pay-
load to be sent.

Figure 31-8. Data IN Transfer for Ping-pong Endpoint

Warning: There is software critical path due to the fact that once the second bank is filled, the
driver has to wait for TX_COMP to set TX_PKTRDY. If the delay between receiving TX_COMP
is set and TX_PKTRDY is set is too long, some Data IN packets may be NACKed, reducing the
bandwidth.

Warning: TX_COMP must be cleared after TX_PKTRDY has been set.

Data INData IN

 Read by USB Device

 Read by USB DeviceBank 1

Bank 0
FIFO (DPR)

TXCOMP Flag
(UDP_CSRx)

Interrupt Cleared by Firmware

Set by USB
Device

TXPKTRDY Flag
(UDP_MCSRx)

ACK
PID

Data IN
PID

ACK
PID

Set by Firmware,
Data Payload Written in FIFO Bank 1

Cleared by USB Device,
Data Payload Fully Transmitted

Data IN
PID

USB Bus
Packets

Set by USB Device

Set by Firmware,
Data Payload Written in FIFO Bank 0

Written by FIFO (DPR)
Microcontroller

Written by
Microcontroller

Written by
Microcontroller

Microcontroller
Load Data IN Bank 0

Microcontroller Load Data IN Bank 1
USB Device Send Bank 0

Microcontroller Load Data IN Bank 0
USB Device Send Bank 1

Interrupt Pending
438
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.5.2.3 Data OUT Transaction
Data OUT transactions are used in control, isochronous, bulk and interrupt transfers and con-
duct the transfer of data from the host to the device. Data OUT transactions in isochronous
transfers must be done using endpoints with ping-pong attributes.

Data OUT Transaction Without Ping-pong Attributes

To perform a Data OUT transaction, using a non ping-pong endpoint:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. While the FIFO associated to this
endpoint is being used by the microcontroller, a NAK PID is returned to the host. Once
the FIFO is available, data are written to the FIFO by the USB device and an ACK is
automatically carried out to the host.

3. The microcontroller is notified that the USB device has received a data payload polling
RX_DATA_BK0 in the endpoint’s UDP_ CSRx register. An interrupt is pending for this
endpoint while RX_DATA_BK0 is set.

4. The number of bytes available in the FIFO is made available by reading RXBYTECNT
in the endpoint’s UDP_ CSRx register.

5. The microcontroller carries out data received from the endpoint’s memory to its mem-
ory. Data received is available by reading the endpoint’s UDP_ FDRx register.

6. The microcontroller notifies the USB device that it has finished the transfer by clearing
RX_DATA_BK0 in the endpoint’s UDP_ CSRx register.

7. A new Data OUT packet can be accepted by the USB device.

Figure 31-9. Data OUT Transfer for Non Ping-pong EndpointsAn interrupt is pending while the flag RX_DATA_BK0 is

set. Memory transfer between the USB device, the FIFO and microcontroller memory can not be done after
RX_DATA_BK0 has been cleared. Otherwise, the USB device would accept the next Data OUT transfer and
overwrite the current Data OUT packet in the FIFO.

Using Endpoints With Ping-pong Attributes

ACK
PID

Data OUTNAK
PIDPIDPIDPIDPID

Data OUT2ACKData OUT Data OUT 1USB Bus
Packets

RX_DATA_BK0

Set by USB Device Cleared by Firmware,
Data Payload Written in FIFO

FIFO (DPR)
Content

Written by USB Device Microcontroller Read

Data OUT 1 Data OUT 1 Data OUT 2

Host Resends the Next Data Payload
Microcontroller Transfers Data

Host Sends Data Payload

Data OUT2 Data OUT2

Host Sends the Next Data Payload

Written by USB Device

(UDP_CSRx)
Interrupt Pending
439
8549A–CAP–10/08

During isochronous transfer, using an endpoint with ping-pong attributes is obligatory. To be
able to guarantee a constant bandwidth, the microcontroller must read the previous data pay-
load sent by the host, while the current data payload is received by the USB device. Thus two
banks of memory are used. While one is available for the microcontroller, the other one is locked
by the USB device.

Figure 31-10. Bank Swapping in Data OUT Transfers for Ping-pong EndpointsWhen using a ping-pong endpoint, the fol-

lowing procedures are required to perform Data OUT transactions:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. It is written in the endpoint’s FIFO
Bank 0.

3. The USB device sends an ACK PID packet to the host. The host can immediately send
a second Data OUT packet. It is accepted by the device and copied to FIFO Bank 1.

4. The microcontroller is notified that the USB device has received a data payload, polling
RX_DATA_BK0 in the endpoint’s UDP_ CSRx register. An interrupt is pending for this
endpoint while RX_DATA_BK0 is set.

5. The number of bytes available in the FIFO is made available by reading RXBYTECNT
in the endpoint’s UDP_ CSRx register.

6. The microcontroller transfers out data received from the endpoint’s memory to the
microcontroller’s memory. Data received is made available by reading the endpoint’s
UDP_ FDRx register.

7. The microcontroller notifies the USB peripheral device that it has finished the transfer
by clearing RX_DATA_BK0 in the endpoint’s UDP_ CSRx register.

8. A third Data OUT packet can be accepted by the USB peripheral device and copied in
the FIFO Bank 0.

9. If a second Data OUT packet has been received, the microcontroller is notified by the
flag RX_DATA_BK1 set in the endpoint’s UDP_ CSRx register. An interrupt is pending
for this endpoint while RX_DATA_BK1 is set.

10. The microcontroller transfers out data received from the endpoint’s memory to the
microcontroller’s memory. Data received is available by reading the endpoint’s UDP_
FDRx register.

USB Device USB Bus

ReadWrite

Write and Read at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1
440
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
11. The microcontroller notifies the USB device it has finished the transfer by clearing
RX_DATA_BK1 in the endpoint’s UDP_ CSRx register.

12. A fourth Data OUT packet can be accepted by the USB device and copied in the FIFO
Bank 0.

Figure 31-11. Data OUT Transfer for Ping-pong EndpointAn interrupt is pending while the RX_DATA_BK0 or

RX_DATA_BK1 flag is set.

Warning: When RX_DATA_BK0 and RX_DATA_BK1 are both set, there is no way to determine
which one to clear first. Thus the software must keep an internal counter to be sure to clear alter-
natively RX_DATA_BK0 then RX_DATA_BK1. This situation may occur when the software
application is busy elsewhere and the two banks are filled by the USB host. Once the application
comes back to the USB driver, the two flags are set.

Stall Handshake

A stall handshake can be used in one of two distinct occasions. (For more information on the
stall handshake, refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0.)

• A functional stall is used when the halt feature associated with the endpoint is set. (Refer to
Chapter 9 of the Universal Serial Bus Specification, Rev 2.0, for more information on the halt
feature.)

• To abort the current request, a protocol stall is used, but uniquely with control transfer.

The following procedure generates a stall packet:

1. The microcontroller sets the FORCESTALL flag in the UDP_ CSRx endpoint’s register.

2. The host receives the stall packet.

A
P

Data OUT
PID

ACK Data OUT 3Data OUTData OUT 2Data OUTData OUT 1PID

Data OUT 3Data OUT 1Data OUT1

Data OUT 2 Data OUT 2

PID PID PID
ACK

 Cleared by Firmware

USB Bus
Packets

RX_DATA_BK0 Flag

RX_DATA_BK1 Flag

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 1

FIFO (DPR)
Bank 0

Bank 1

Write by USB Device Write In Progress

Read By Microcontroller

Read By Microcontroller

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 0

Host Sends First Data Payload
 Microcontroller Reads Data?1 in Bank 0,
 Host Sends Second Data Payload

 Microcontroller Reads Data2 in Bank 1,
 Host Sends Third Data Payload

Cleared by Firmware

Write by USB Device

FIFO (DPR)

(UDP_CSRx)

(UDP_CSRx)

Interrupt Pending

Interrupt Pending
441
8549A–CAP–10/08

3. The microcontroller is notified that the device has sent the stall by polling the
STALLSENT to be set. An endpoint interrupt is pending while STALLSENT is set. The
microcontroller must clear STALLSENT to clear the interrupt.

When a setup transaction is received after a stall handshake, STALLSENT must be cleared in
order to prevent interrupts due to STALLSENT being set.

Figure 31-12. Stall Handshake (Data IN Transfer)

Figure 31-13. Stall Handshake (Data OUT Transfer)

Data IN Stall PIDPIDUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by
USB Device

Cleared by Firmware

Interrupt Pending

Data OUT PID Stall PID Data OUTUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by USB Device

Interrupt Pending
442
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.5.3 Controlling Device States
A USB device has several possible states. Refer to Chapter 9 of the Universal Serial Bus Speci-
fication, Rev 2.0.

Figure 31-14. USB Device State Diagram

Movement from one state to another depends on the USB bus state or on standard requests
sent through control transactions via the default endpoint (endpoint 0).

After a period of bus inactivity, the USB device enters Suspend Mode. Accepting Sus-
pend/Resume requests from the USB host is mandatory. Constraints in Suspend Mode are very
strict for bus-powered applications; devices may not consume more than 500 μA on the USB
bus.

While in Suspend Mode, the host may wake up a device by sending a resume signal (bus activ-
ity) or a USB device may send a wake up request to the host, e.g., waking up a PC by moving a
USB mouse.

The wake up feature is not mandatory for all devices and must be negotiated with the host.

Not Powered State

Attached

Suspended

Suspended

Suspended

Suspended

Hub Reset
or

Deconfigured

Hub
Configured

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Reset

Reset

Address
Assigned

Device
Deconfigured

Device
Configured

Powered

Default

Address

Configured

Power
Interruption
443
8549A–CAP–10/08

Self powered devices can detect 5V VBUS using a PIO as described in the typical connection
section. When the device is not connected to a host, device power consumption can be reduced
by disabling MCK for the UDP, disabling UDPCK and disabling the transceiver. DDP and DDM
lines are pulled down by 330 KΩ resistors.

31.5.3.1 Entering Attached State
When no device is connected, the USB DP and DM signals are tied to GND by 15 KΩ pull-down
resistors integrated in the hub downstream ports. When a device is attached to a hub down-
stream port, the device connects a 1.5 KΩ pull-up resistor on DP. The USB bus line goes into
IDLE state, DP is pulled up by the device 1.5 KΩ resistor to 3.3V and DM is pulled down by the
15 KΩ resistor of the host. To enable integrated pullup, the UDP_PUP_ON bit in the
MATRIX_USBPCR Bus Matrix register must be set.

After pullup connection, the device enters the powered state. In this state, the UDPCK and MCK
must be enabled in the Power Management Controller. The transceiver can remain disabled.

31.5.3.2 From Powered State to Default State
After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmask-
able flag ENDBUSRES is set in the register UDP_ISR and an interrupt is triggered.

Once the ENDBUSRES interrupt has been triggered, the device enters Default State. In this
state, the UDP software must:

• Enable the default endpoint, setting the EPEDS flag in the UDP_CSR[0] register and,
optionally, enabling the interrupt for endpoint 0 by writing 1 to the UDP_IER register. The
enumeration then begins by a control transfer.

• Configure the interrupt mask register which has been reset by the USB reset detection

• Enable the transceiver clearing the TXVDIS flag in the UDP_TXVC register.

In this state UDPCK and MCK must be enabled.

Warning: Each time an ENDBUSRES interrupt is triggered, the Interrupt Mask Register and
UDP_CSR registers have been reset.

31.5.3.3 From Default State to Address State
After a set address standard device request, the USB host peripheral enters the address state.

Warning: Before the device enters in address state, it must achieve the Status IN transaction of
the control transfer, i.e., the UDP device sets its new address once the TXCOMP flag in the
UDP_CSR[0] register has been received and cleared.

To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STAT
register, sets its new address, and sets the FEN bit in the UDP_FADDR register.

31.5.3.4 From Address State to Configured State
Once a valid Set Configuration standard request has been received and acknowledged, the
device enables endpoints corresponding to the current configuration. This is done by setting the
EPEDS and EPTYPE fields in the UDP_CSRx registers and, optionally, enabling corresponding
interrupts in the UDP_IER register.
444
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.5.3.5 Entering in Suspend State
When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the
UDP_ISR register is set. This triggers an interrupt if the corresponding bit is set in the UDP_IMR
register.This flag is cleared by writing to the UDP_ICR register. Then the device enters Suspend
Mode.

In this state bus powered devices must drain less than 500uA from the 5V VBUS. As an exam-
ple, the microcontroller switches to slow clock, disables the PLL and main oscillator, and goes
into Idle Mode. It may also switch off other devices on the board.

The USB device peripheral clocks can be switched off. Resume event is asynchronously
detected. MCK and UDPCK can be switched off in the Power Management controller and the
USB transceiver can be disabled by setting the TXVDIS field in the UDP_TXVC register.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the
UDP peripheral. Switching off MCK for the UDP peripheral must be one of the last operations
after writing to the UDP_TXVC and acknowledging the RXSUSP.

31.5.3.6 Receiving a Host Resume
In suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver
and clocks are disabled (however the pullup shall not be removed).

Once the resume is detected on the bus, the WAKEUP signal in the UDP_ISR is set. It may gen-
erate an interrupt if the corresponding bit in the UDP_IMR register is set. This interrupt may be
used to wake up the core, enable PLL and main oscillators and configure clocks.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the
UDP peripheral. MCK for the UDP must be enabled before clearing the WAKEUP bit in the
UDP_ICR register and clearing TXVDIS in the UDP_TXVC register.

31.5.3.7 Sending a Device Remote Wakeup
In Suspend state it is possible to wake up the host sending an external resume.

• The device must wait at least 5 ms after being entered in suspend before sending an external
resume.

• The device has 10 ms from the moment it starts to drain current and it forces a K state to
resume the host.

• The device must force a K state from 1 to 15 ms to resume the host

To force a K state to the bus (DM at 3.3V and DP tied to GND), it is possible to use a transistor
to connect a pullup on DM. The K state is obtained by disabling the pullup on DP and enabling
the pullup on DM. This should be under the control of the application.
445
8549A–CAP–10/08

Figure 31-15. Board Schematic to Drive a K State

3V3

PIO

1.5 K

0: Force Wake UP (K State)
1: Normal Mode

DM
446
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6 USB Device Port (UDP) User Interface
WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write
operations to the UDP registers including the UDP_TXVC register.

Notes: 1. The addresses of the UDP_ CSRx registers are calculated as: 0x030 + 4(Endpoint Number - 1).
2. The addresses of the UDP_ FDRx registers are calculated as: 0x050 + 4(Endpoint Number - 1).
3. See Warning above the ”UDP Memory Map” on this page.

Table 31-4. UDP Memory Map

Offset Register Name Access Reset State

0x000 Frame Number Register UDP_ FRM_NUM Read 0x0000_0000

0x004 Global State Register UDP_ GLB_STAT Read/Write 0x0000_0000

0x008 Function Address Register UDP_ FADDR Read/Write 0x0000_0100

0x00C Reserved – – –

0x010 Interrupt Enable Register UDP_ IER Write

0x014 Interrupt Disable Register UDP_ IDR Write

0x018 Interrupt Mask Register UDP_ IMR Read 0x0000_1200

0x01C Interrupt Status Register UDP_ ISR Read 0x0000_XX00

0x020 Interrupt Clear Register UDP_ ICR Write

0x024 Reserved – – –

0x028 Reset Endpoint Register UDP_ RST_EP Read/Write

0x02C Reserved – – –

0x030 Endpoint 0 Control and Status Register UDP_CSR0 Read/Write 0x0000_0000

.

.

.

.

.

.

See Note: (1) Endpoint 5 Control and Status Register UDP_CSR5 Read/Write 0x0000_0000

0x050 Endpoint 0 FIFO Data Register UDP_ FDR0 Read/Write 0x0000_0000

.

.

.

.

.

.

See Note: (2) Endpoint 5 FIFO Data Register UDP_ FDR5 Read/Write 0x0000_0000

0x070 Reserved – – –

0x074 Transceiver Control Register UDP_ TXVC (3) Read/Write 0x0000_0100

0x078 - 0xFC Reserved – – –
447
8549A–CAP–10/08

31.6.1 UDP Frame Number Register
Register Name: UDP_ FRM_NUM

Access Type: Read-only

• FRM_NUM[10:0]: Frame Number as Defined in the Packet Field Formats
This 11-bit value is incremented by the host on a per frame basis. This value is updated at each start of frame.

Value Updated at the SOF_EOP (Start of Frame End of Packet).

• FRM_ERR: Frame Error
This bit is set at SOF_EOP when the SOF packet is received containing an error.

This bit is reset upon receipt of SOF_PID.

• FRM_OK: Frame OK
This bit is set at SOF_EOP when the SOF packet is received without any error.

This bit is reset upon receipt of SOF_PID (Packet Identification).

In the Interrupt Status Register, the SOF interrupt is updated upon receiving SOF_PID. This bit is set without waiting for
EOP.

Note: In the 8-bit Register Interface, FRM_OK is bit 4 of FRM_NUM_H and FRM_ERR is bit 3 of FRM_NUM_L.

31 30 29 28 27 26 25 24
--- --- --- --- --- --- --- ---

23 22 21 20 19 18 17 16

– – – – – – FRM_OK FRM_ERR

15 14 13 12 11 10 9 8

– – – – – FRM_NUM

7 6 5 4 3 2 1 0

FRM_NUM
448
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.2 UDP Global State Register
Register Name: UDP_GLB_STAT

Access Type: Read/Write

This register is used to get and set the device state as specified in Chapter 9 of the USB Serial Bus Specification, Rev.2.0.

• FADDEN: Function Address Enable
Read:

0 = Device is not in address state.

1 = Device is in address state.

Write:

0 = No effect, only a reset can bring back a device to the default state.

1 = Sets device in address state. This occurs after a successful Set Address request. Beforehand, the UDP_ FADDR regis-
ter must have been initialized with Set Address parameters. Set Address must complete the Status Stage before setting
FADDEN. Refer to chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 for more details.

• CONFG: Configured
Read:

0 = Device is not in configured state.

1 = Device is in configured state.

Write:

0 = Sets device in a non configured state

1 = Sets device in configured state.

The device is set in configured state when it is in address state and receives a successful Set Configuration request. Refer
to Chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 for more details.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – CONFG FADDEN
449
8549A–CAP–10/08

31.6.3 UDP Function Address Register
Register Name: UDP_ FADDR

Access Type: Read/Write

• FADD[6:0]: Function Address Value
The Function Address Value must be programmed by firmware once the device receives a set address request from the
host, and has achieved the status stage of the no-data control sequence. Refer to the Universal Serial Bus Specification,
Rev. 2.0 for more information. After power up or reset, the function address value is set to 0.

• FEN: Function Enable
Read:

0 = Function endpoint disabled.

1 = Function endpoint enabled.

Write:

0 = Disables function endpoint.

1 = Default value.

The Function Enable bit (FEN) allows the microcontroller to enable or disable the function endpoints. The microcontroller
sets this bit after receipt of a reset from the host. Once this bit is set, the USB device is able to accept and transfer data
packets from and to the host.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – FEN

7 6 5 4 3 2 1 0

– FADD
450
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.4 UDP Interrupt Enable Register
Register Name: UDP_ IER

Access Type: Write-only

• EP0INT: Enable Endpoint 0 Interrupt

• EP1INT: Enable Endpoint 1 Interrupt

• EP2INT: Enable Endpoint 2Interrupt

• EP3INT: Enable Endpoint 3 Interrupt

• EP4INT: Enable Endpoint 4 Interrupt

• EP5INT: Enable Endpoint 5 Interrupt
0 = No effect.

1 = Enables corresponding Endpoint Interrupt.

• RXSUSP: Enable UDP Suspend Interrupt
0 = No effect.

1 = Enables UDP Suspend Interrupt.

• RXRSM: Enable UDP Resume Interrupt
0 = No effect.

1 = Enables UDP Resume Interrupt.

• SOFINT: Enable Start Of Frame Interrupt
0 = No effect.

1 = Enables Start Of Frame Interrupt.

• WAKEUP: Enable UDP bus Wakeup Interrupt
0 = No effect.

1 = Enables USB bus Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT – RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
451
8549A–CAP–10/08

31.6.5 UDP Interrupt Disable Register
Register Name: UDP_ IDR

Access Type: Write-only

• EP0INT: Disable Endpoint 0 Interrupt

• EP1INT: Disable Endpoint 1 Interrupt

• EP2INT: Disable Endpoint 2 Interrupt

• EP3INT: Disable Endpoint 3 Interrupt

• EP4INT: Disable Endpoint 4 Interrupt

• EP5INT: Disable Endpoint 5 Interrupt
0 = No effect.

1 = Disables corresponding Endpoint Interrupt.

• RXSUSP: Disable UDP Suspend Interrupt
0 = No effect.

1 = Disables UDP Suspend Interrupt.

• RXRSM: Disable UDP Resume Interrupt
0 = No effect.

1 = Disables UDP Resume Interrupt.

• SOFINT: Disable Start Of Frame Interrupt
0 = No effect.

1 = Disables Start Of Frame Interrupt

• WAKEUP: Disable USB Bus Interrupt
0 = No effect.

1 = Disables USB Bus Wakeup Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT – RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
452
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.6 UDP Interrupt Mask Register
Register Name: UDP_ IMR

Access Type: Read-only

Note: 1. Bit 12 of UDP_IMR cannot be masked and is always read at 1.

• EP0INT: Mask Endpoint 0 Interrupt

• EP1INT: Mask Endpoint 1 Interrupt

• EP2INT: Mask Endpoint 2 Interrupt

• EP3INT: Mask Endpoint 3 Interrupt

• EP4INT: Mask Endpoint 4 Interrupt

• EP5INT: Mask Endpoint 5 Interrupt
0 = Corresponding Endpoint Interrupt is disabled.

1 = Corresponding Endpoint Interrupt is enabled.

• RXSUSP: Mask UDP Suspend Interrupt
0 = UDP Suspend Interrupt is disabled.

1 = UDP Suspend Interrupt is enabled.

• RXRSM: Mask UDP Resume Interrupt.
0 = UDP Resume Interrupt is disabled.

1 = UDP Resume Interrupt is enabled.

• SOFINT: Mask Start Of Frame Interrupt
0 = Start of Frame Interrupt is disabled.

1 = Start of Frame Interrupt is enabled.

• WAKEUP: USB Bus WAKEUP Interrupt
0 = USB Bus Wakeup Interrupt is disabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12(1) 11 10 9 8

– – WAKEUP – SOFINT – RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
453
8549A–CAP–10/08

1 = USB Bus Wakeup Interrupt is enabled.

Note: When the USB block is in suspend mode, the application may power down the USB logic. In this case, any USB HOST resume
request that is made must be taken into account and, thus, the reset value of the RXRSM bit of the register UDP_ IMR is
enabled.
454
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.7 UDP Interrupt Status Register
Register Name: UDP_ ISR

Access Type: Read-only

• EP0INT: Endpoint 0 Interrupt Status

• EP1INT: Endpoint 1 Interrupt Status

• EP2INT: Endpoint 2 Interrupt Status

• EP3INT: Endpoint 3 Interrupt Status

• EP4INT: Endpoint 4 Interrupt Status

• EP5INT: Endpoint 5 Interrupt Status
0 = No Endpoint0 Interrupt pending.

1 = Endpoint0 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading UDP_ CSR0:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP0INT is a sticky bit. Interrupt remains valid until EP0INT is cleared by writing in the corresponding UDP_ CSR0 bit.

• RXSUSP: UDP Suspend Interrupt Status
0 = No UDP Suspend Interrupt pending.

1 = UDP Suspend Interrupt has been raised.

The USB device sets this bit when it detects no activity for 3ms. The USB device enters Suspend mode.

• RXRSM: UDP Resume Interrupt Status
0 = No UDP Resume Interrupt pending.

1 =UDP Resume Interrupt has been raised.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP ENDBUSRES SOFINT – RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
455
8549A–CAP–10/08

The USB device sets this bit when a UDP resume signal is detected at its port.

After reset, the state of this bit is undefined, the application must clear this bit by setting the RXRSM flag in the UDP_ ICR
register.

• SOFINT: Start of Frame Interrupt Status
0 = No Start of Frame Interrupt pending.

1 = Start of Frame Interrupt has been raised.

This interrupt is raised each time a SOF token has been detected. It can be used as a synchronization signal by using

isochronous endpoints.

• ENDBUSRES: End of BUS Reset Interrupt Status
0 = No End of Bus Reset Interrupt pending.

1 = End of Bus Reset Interrupt has been raised.

This interrupt is raised at the end of a UDP reset sequence. The USB device must prepare to receive requests on the end-
point 0. The host starts the enumeration, then performs the configuration.

• WAKEUP: UDP Resume Interrupt Status
0 = No Wakeup Interrupt pending.

1 = A Wakeup Interrupt (USB Host Sent a RESUME or RESET) occurred since the last clear.

After reset the state of this bit is undefined, the application must clear this bit by setting the
WAKEUP flag in the UDP_ ICR register.
456
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.8 UDP Interrupt Clear Register
Register Name: UDP_ ICR

Access Type: Write-only

• RXSUSP: Clear UDP Suspend Interrupt
0 = No effect.

1 = Clears UDP Suspend Interrupt.

• RXRSM: Clear UDP Resume Interrupt
0 = No effect.

1 = Clears UDP Resume Interrupt.

• SOFINT: Clear Start Of Frame Interrupt
0 = No effect.

1 = Clears Start Of Frame Interrupt.

• ENDBUSRES: Clear End of Bus Reset Interrupt
0 = No effect.

1 = Clears End of Bus Reset Interrupt.

• WAKEUP: Clear Wakeup Interrupt
0 = No effect.

1 = Clears Wakeup Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP ENDBUSRES SOFINT – RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – – – – – – –
457
8549A–CAP–10/08

31.6.9 UDP Reset Endpoint Register
Register Name: UDP_ RST_EP

Access Type: Read/Write

• EP0: Reset Endpoint 0

• EP1: Reset Endpoint 1

• EP2: Reset Endpoint 2

• EP3: Reset Endpoint 3

• EP4: Reset Endpoint 4

• EP5: Reset Endpoint 5
This flag is used to reset the FIFO associated with the endpoint and the bit RXBYTECOUNT in the register UDP_CSRx.It
also resets the data toggle to DATA0. It is useful after removing a HALT condition on a BULK endpoint. Refer to Chapter
5.8.5 in the USB Serial Bus Specification, Rev.2.0.

Warning: This flag must be cleared at the end of the reset. It does not clear UDP_ CSRx flags.

0 = No reset.

1 = Forces the corresponding endpoint FIF0 pointers to 0, therefore RXBYTECNT field is read at 0 in UDP_ CSRx register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

EP5 EP4 EP3 EP2 EP1 EP0
458
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.10 UDP Endpoint Control and Status Register
Register Name: UDP_ CSRx [x = 0..5]

Access Type: Read/Write

WARNING: Due to synchronization between MCK and UDPCK, the software application must wait for the end of the write
operation before executing another write by polling the bits which must be set/cleared.

//! Clear flags of UDP UDP_CSR register and waits for synchronization
#define Udp_ep_clr_flag(pInterface, endpoint, flags) { \
while (pInterface->UDP_CSR[endpoint] & (flags)) \
pInterface->UDP_CSR[endpoint] &= ~(flags); \

}

//! Set flags of UDP UDP_CSR register and waits for synchronization
#define Udp_ep_set_flag(pInterface, endpoint, flags) { \
while ((pInterface->UDP_CSR[endpoint] & (flags)) != (flags)) \
pInterface->UDP_CSR[endpoint] |= (flags); \

}

• TXCOMP: Generates an IN Packet with Data Previously Written in the DPR
This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware):

0 = Clear the flag, clear the interrupt.

1 = No effect.

Read (Set by the USB peripheral):

0 = Data IN transaction has not been acknowledged by the Host.

1 = Data IN transaction is achieved, acknowledged by the Host.

After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the
host has acknowledged the transaction.

• RX_DATA_BK0: Receive Data Bank 0
This flag generates an interrupt while it is set to one.
Write (Cleared by the firmware):

0 = Notify USB peripheral device that data have been read in the FIFO's Bank 0.

31 30 29 28 27 26 25 24
– – – – – RXBYTECNT

23 22 21 20 19 18 17 16

RXBYTECNT

15 14 13 12 11 10 9 8

EPEDS – – – DTGLE EPTYPE

7 6 5 4 3 2 1 0

DIR
RX_DATA_

BK1
FORCE
STALL

TXPKTRDY
STALLSENT
ISOERROR

RXSETUP
RX_DATA_

BK0
TXCOMP
459
8549A–CAP–10/08

1 = To leave the read value unchanged.

Read (Set by the USB peripheral):

0 = No data packet has been received in the FIFO's Bank 0.

1 = A data packet has been received, it has been stored in the FIFO's Bank 0.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to
the microcontroller memory. The number of bytes received is available in RXBYTCENT field. Bank 0 FIFO values are read
through the UDP_ FDRx register. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral
device by clearing RX_DATA_BK0.

• RXSETUP: Received Setup
This flag generates an interrupt while it is set to one.

Read:

0 = No setup packet available.

1 = A setup data packet has been sent by the host and is available in the FIFO.

Write:

0 = Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO.

1 = No effect.

This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and success-
fully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the UDP_
FDRx register to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the device
firmware.

Ensuing Data OUT transaction is not accepted while RXSETUP is set.

• STALLSENT: Stall Sent (Control, Bulk Interrupt Endpoints)/ISOERROR (Isochronous Endpoints)
This flag generates an interrupt while it is set to one.

STALLSENT: This ends a STALL handshake.

Read:

0 = The host has not acknowledged a STALL.

1 = Host has acknowledged the stall.

Write:

0 = Resets the STALLSENT flag, clears the interrupt.

1 = No effect.

This is mandatory for the device firmware to clear this flag. Otherwise the interrupt remains.

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL
handshake.

ISOERROR: A CRC error has been detected in an isochronous transfer.
460
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Read:

0 = No error in the previous isochronous transfer.

1 = CRC error has been detected, data available in the FIFO are corrupted.

Write:

0 = Resets the ISOERROR flag, clears the interrupt.

1 = No effect.

• TXPKTRDY: Transmit Packet Ready
This flag is cleared by the USB device.

This flag is set by the USB device firmware.

Read:

0 = Can be set to one to send the FIFO data.

1 = The data is waiting to be sent upon reception of token IN.

Write:

0 = Can be written if old value is zero.

1 = A new data payload is has been written in the FIFO by the firmware and is ready to be sent.

This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload
in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the UDP_ FDRx register. Once
the data payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB
bus transactions can start. TXCOMP is set once the data payload has been received by the host.

• FORCESTALL: Force Stall (used by Control, Bulk and Isochronous Endpoints)
Read:

0 = Normal state.

1 = Stall state.

Write:

0 = Return to normal state.

1 = Send STALL to the host.

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL
handshake.

Control endpoints: During the data stage and status stage, this bit indicates that the microcontroller cannot complete the
request.

Bulk and interrupt endpoints: This bit notifies the host that the endpoint is halted.

The host acknowledges the STALL, device firmware is notified by the STALLSENT flag.

• RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes)
This flag generates an interrupt while it is set to one.
461
8549A–CAP–10/08

Write (Cleared by the firmware):

0 = Notifies USB device that data have been read in the FIFO’s Bank 1.

1 = To leave the read value unchanged.

Read (Set by the USB peripheral):

0 = No data packet has been received in the FIFO's Bank 1.

1 = A data packet has been received, it has been stored in FIFO's Bank 1.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to
microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read
through UDP_ FDRx register. Once a transfer is done, the device firmware must release Bank 1 to the USB device by
clearing RX_DATA_BK1.

• DIR: Transfer Direction (only available for control endpoints)
Read/Write

0 = Allows Data OUT transactions in the control data stage.

1 = Enables Data IN transactions in the control data stage.

Refer to Chapter 8.5.3 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the control data stage.

This bit must be set before UDP_ CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent
in the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not
necessary to check this bit to reverse direction for the status stage.

• EPTYPE[2:0]: Endpoint Type

• DTGLE: Data Toggle
Read-only

0 = Identifies DATA0 packet.

1 = Identifies DATA1 packet.

Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0 for more information on DATA0, DATA1 packet
definitions.

• EPEDS: Endpoint Enable Disable
Read:

Read/Write

000 Control

001 Isochronous OUT

101 Isochronous IN

010 Bulk OUT

110 Bulk IN

011 Interrupt OUT

111 Interrupt IN
462
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
0 = Endpoint disabled.

1 = Endpoint enabled.

Write:

0 = Disables endpoint.

1 = Enables endpoint.

Control endpoints are always enabled. Reading or writing this field has no effect on control endpoints.

Note: After reset all endpoints are configured as control endpoints (zero).

• RXBYTECNT[10:0]: Number of Bytes Available in the FIFO
Read-only

When the host sends a data packet to the device, the USB device stores the data in the FIFO and notifies the microcon-
troller. The microcontroller can load the data from the FIFO by reading RXBYTECENT bytes in the UDP_ FDRx register.
463
8549A–CAP–10/08

31.6.11 UDP FIFO Data Register
Register Name: UDP_ FDRx [x = 0..5]

Access Type: Read/Write

• FIFO_DATA[7:0]: FIFO Data Value
The microcontroller can push or pop values in the FIFO through this register.

RXBYTECNT in the corresponding UDP_ CSRx register is the number of bytes to be read from the FIFO (sent by the host).

The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be
more than the physical memory size associated to the endpoint. Refer to the Universal Serial Bus Specification, Rev. 2.0
for more information.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

FIFO_DATA
464
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
31.6.12 UDP Transceiver Control Register
Register Name: UDP_ TXVC

Access Type: Read/Write

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write
operations to the UDP registers including the UDP_TXVC register.

• TXVDIS: Transceiver Disable
When UDP is disabled, power consumption can be reduced significantly by disabling the embedded transceiver. This can
be done by setting TXVDIS field.

To enable the transceiver, TXVDIS must be cleared. TXVDIS is automatically set after a reset, so it must be cleared again
to reenable the transceiver.

Note: The USB transceiver pull-ups are enabled/disabled by writing to the MATRIX_USBPCR register documented in Section
19.6.7.

Note: If the USB pullup is not enabled on DP, the user should not write in any UDP register other than the UDP_ TXVC register. This
is because if DP and DM are floating at 0, or pulled down, then SE0 is received by the device with the consequence of a USB
Reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXVDIS

7 6 5 4 3 2 1 0

– – – – – – – –
465
8549A–CAP–10/08

466
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
32. Analog-to-digital Converter (ADC)

32.1 Description
The ADC is based on a Successive Approximation Register (SAR) 10-bit Analog-to-Digital Con-
verter (ADC). It also integrates an 8-to-1 analog multiplexer, making possible the analog-to-
digital conversions of 8 analog lines. The conversions extend from 0V to ADVREF.

On the AT91CAP7E device, the analog inputs are AD0 - AD7.

The ADC supports an 8-bit or 10-bit resolution mode, and conversion results are reported in a
common register for all channels, as well as in a channel-dedicated register. Software trigger,
external trigger on rising edge of the ADTRG pin or internal triggers from Timer Counter out-
put(s) are configurable.

The ADC also integrates a Sleep Mode and a conversion sequencer and connects with a PDC
channel. These features reduce both power consumption and processor intervention.

Finally, the user can configure ADC timings, such as Startup Time and Sample & Hold Time.

32.2 Block Diagram

Figure 32-1. Analog-to-Digital Converter Block Diagram

ADC Interrupt

ADC

ADTRG

AVDD

ADVREF

AGND

Trigger
Selection

Control
Logic

Successive
Approximation

Register
Analog-to-Digital

Converter

Timer
Counter

Channels

User
Interface

AIC

Peripheral Bridge

APB

PDC

ASB

Analog Inputs
Multiplexed

with I/O lines

MPIO
AD0

AD1

AD7
467
8549A–CAP–10/08

32.3 Signal Description

32.4 Product Dependencies

32.4.1 Power Management
The ADC is automatically clocked after the first conversion in Normal Mode. In Sleep Mode, the
ADC clock is automatically stopped after each conversion. As the logic is small and the ADC cell
can be put into Sleep Mode, the Power Management Controller has no effect on the ADC
behavior.

32.4.2 Interrupt Sources
The ADC interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the ADC interrupt requires the AIC to be programmed first.

32.4.3 Analog Inputs
The analog input pins can be multiplexed with PIO lines. In this case, the assignment of the ADC
input is automatically done as soon as the corresponding channel is enabled by writing the reg-
ister ADC_CHER. By default, after reset, the PIO line is configured as input with its pull-up
enabled and the ADC input is connected to the GND.

32.4.4 I/O Lines
The pin ADTRG may be shared with other peripheral functions through the PIO Controller. In
this case, the PIO Controller should be set accordingly to assign the pin ADTRG to the ADC
function.

32.4.5 Timer Triggers
Timer Counters may or may not be used as hardware triggers depending on user requirements.
Thus, some or all of the timer counters may be non-connected.

32.4.6 Conversion Performances
For performance and electrical characteristics of the ADC, see the DC Characteristics section.

32.5 Functional Description

32.5.1 Analog-to-digital Conversion
The ADC uses the ADC Clock to perform conversions. Converting a single analog value to a 10-
bit digital data requires Sample and Hold Clock cycles as defined in the field SHTIM of the “ADC
Mode Register” on page 474 and 10 ADC Clock cycles. The ADC Clock frequency is selected in
the PRESCAL field of the Mode Register (ADC_MR).

Table 32-1. ADC Pin Description

Pin Name Description

AVDD Analog power supply

ADVREF Reference voltage

AD0 - AD7 Analog input channels

ADTRG External trigger
468
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
The ADC clock range is between MCK/2, if PRESCAL is 0, and MCK/128, if PRESCAL is set to
63 (0x3F). PRESCAL must be programmed in order to provide an ADC clock frequency accord-
ing to the parameters given in the Product definition section.

32.5.2 Conversion Reference
The conversion is performed on a full range between 0V and the reference voltage pin ADVREF.
Analog inputs between these voltages convert to values based on a linear conversion.

32.5.3 Conversion Resolution
The ADC supports 8-bit or 10-bit resolutions. The 8-bit selection is performed by setting the bit
LOWRES in the ADC Mode Register (ADC_MR). By default, after a reset, the resolution is the
highest and the DATA field in the data registers is fully used. By setting the bit LOWRES, the
ADC switches in the lowest resolution and the conversion results can be read in the eight lowest
significant bits of the data registers. The two highest bits of the DATA field in the corresponding
ADC_CDR register and of the LDATA field in the ADC_LCDR register read 0.

Moreover, when a PDC channel is connected to the ADC, 10-bit resolution sets the transfer
request sizes to 16-bit. Setting the bit LOWRES automatically switches to 8-bit data transfers. In
this case, the destination buffers are optimized.
469
8549A–CAP–10/08

32.5.4 Conversion Results
When a conversion is completed, the resulting 10-bit digital value is stored in the Channel Data
Register (ADC_CDR) of the current channel and in the ADC Last Converted Data Register
(ADC_LCDR).

The channel EOC bit in the Status Register (ADC_SR) is set and the DRDY is set. In the case of
a connected PDC channel, DRDY rising triggers a data transfer request. In any case, either
EOC and DRDY can trigger an interrupt.

Reading one of the ADC_CDR registers clears the corresponding EOC bit. Reading ADC_LCDR
clears the DRDY bit and the EOC bit corresponding to the last converted channel.

Figure 32-2. EOCx and DRDY Flag Behavior

If the ADC_CDR is not read before further incoming data is converted, the corresponding Over-
run Error (OVRE) flag is set in the Status Register (ADC_SR).

In the same way, new data converted when DRDY is high sets the bit GOVRE (General Overrun
Error) in ADC_SR.

The OVRE and GOVRE flags are automatically cleared when ADC_SR is read.

Conversion Time

Read the ADC_CDRx

EOCx

DRDY

Read the ADC_LCDR

CHx
(ADC_CHSR)

(ADC_SR)

(ADC_SR)

Write the ADC_CR
 with START = 1

Conversion Time

Write the ADC_CR
 with START = 1
470
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 32-3. GOVRE and OVREx Flag Behavior

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and
then reenabled during a conversion, its associated data and its corresponding EOC and OVRE
flags in ADC_SR are unpredictable.

32.5.5 Conversion Triggers
Conversions of the active analog channels are started with a software or a hardware trigger. The
software trigger is provided by writing the Control Register (ADC_CR) with the bit START at 1.

The hardware trigger can be one of the TIOA outputs of the Timer Counter channels, or the
external trigger input of the ADC (ADTRG). The hardware trigger is selected with the field TRG-
SEL in the Mode Register (ADC_MR). The selected hardware trigger is enabled with the bit
TRGEN in the Mode Register (ADC_MR).

If a hardware trigger is selected, the start of a conversion is detected at each rising edge of the
selected signal. If one of the TIOA outputs is selected, the corresponding Timer Counter channel
must be programmed in Waveform Mode.

EOC0

GOVRE

CH0
(ADC_CHSR)

(ADC_SR)

(ADC_SR)

ADTRG

EOC1

CH1
(ADC_CHSR)

(ADC_SR)

OVRE0
(ADC_SR)

Undefined Data Data A Data BADC_LCDR

Undefined Data Data AADC_CDR0

Undefined Data Data BADC_CDR1

Data C

Data C

Conversion
Conversion

Read ADC_SR

DRDY
(ADC_SR)

Read ADC_CDR1

Read ADC_CDR0

Conversion
471
8549A–CAP–10/08

Only one start command is necessary to initiate a conversion sequence on all the channels. The
ADC hardware logic automatically performs the conversions on the active channels, then waits
for a new request. The Channel Enable (ADC_CHER) and Channel Disable (ADC_CHDR) Reg-
isters enable the analog channels to be enabled or disabled independently.

If the ADC is used with a PDC, only the transfers of converted data from enabled channels are
performed and the resulting data buffers should be interpreted accordingly.

Warning: Enabling hardware triggers does not disable the software trigger functionality. Thus, if
a hardware trigger is selected, the start of a conversion can be initiated either by the hardware or
the software trigger.

32.5.6 Sleep Mode and Conversion Sequencer
The ADC Sleep Mode maximizes power saving by automatically deactivating the ADC when it is
not being used for conversions. Sleep Mode is selected by setting the bit SLEEP in the Mode
Register ADC_MR.

The SLEEP mode is automatically managed by a conversion sequencer, which can automati-
cally process the conversions of all channels at lowest power consumption.

When a start conversion request occurs, the ADC is automatically activated. As the analog cell
requires a start-up time, the logic waits during this time and starts the conversion on the enabled
channels. When all conversions are complete, the ADC is deactivated until the next trigger. Trig-
gers occurring during the sequence are not taken into account.

The conversion sequencer allows automatic processing with minimum processor intervention
and optimized power consumption. Conversion sequences can be performed periodically using
a Timer/Counter output. The periodic acquisition of several samples can be processed automat-
ically without any intervention of the processor thanks to the PDC.

Note: The reference voltage pins always remain connected in normal mode as in sleep mode.

32.5.7 ADC Timings
Each ADC has its own minimal Startup Time that is programmed through the field STARTUP in
the Mode Register ADC_MR.

In the same way, a minimal Sample and Hold Time is necessary for the ADC to guarantee the
best converted final value between two channels selection. This time has to be programmed
through the bitfield SHTIM in the Mode Register ADC_MR.

Warning: No input buffer amplifier to isolate the source is included in the ADC. This must be
taken into consideration to program a precise value in the SHTIM field. See the section, ADC
Characteristics in the product datasheet.
472
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
32.6 Analog-to-digital Converter (ADC) User Interface

Table 32-2. ADC Register Mapping

Offset Register Name Access Reset State

0x00 Control Register ADC_CR Write-only –

0x04 Mode Register ADC_MR Read/Write 0x00000000

0x08 Reserved – – –

0x0C Reserved – – –

0x10 Channel Enable Register ADC_CHER Write-only –

0x14 Channel Disable Register ADC_CHDR Write-only –

0x18 Channel Status Register ADC_CHSR Read-only 0x00000000

0x1C Status Register ADC_SR Read-only 0x000C0000

0x20 Last Converted Data Register ADC_LCDR Read-only 0x00000000

0x24 Interrupt Enable Register ADC_IER Write-only –

0x28 Interrupt Disable Register ADC_IDR Write-only –

0x2C Interrupt Mask Register ADC_IMR Read-only 0x00000000

0x30 Channel Data Register 0 ADC_CDR0 Read-only 0x00000000

0x34 Channel Data Register 1 ADC_CDR1 Read-only 0x00000000

...

0x4C Channel Data Register 7 ADC_CDR7 Read-only 0x00000000

0x50 - 0xFC Reserved − − −

0x100 - 0x124 Reserved for the PDC
473
8549A–CAP–10/08

32.6.1 ADC Control Register
Register Name: ADC_CR

Access Type: Write-only

• SWRST: Software Reset
0 = No effect.

1 = Resets the ADC simulating a hardware reset.

• START: Start Conversion
0 = No effect.

1 = Begins analog-to-digital conversion.

32.6.2 ADC Mode Register
Register Name: ADC_MR

Access Type: Read/Write

• TRGEN: Trigger Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – START SWRST

31 30 29 28 27 26 25 24

– – – – SHTIM

23 22 21 20 19 18 17 16

– – – STARTUP

15 14 13 12 11 10 9 8

– – PRESCAL

7 6 5 4 3 2 1 0
– – SLEEP LOWRES TRGSEL TRGEN

TRGEN Selected TRGEN

0 Hardware triggers are disabled. Starting a conversion is only possible by software.

1 Hardware trigger selected by TRGSEL field is enabled.
474
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• TRGSEL: Trigger Selection

• LOWRES: Resolution

• SLEEP: Sleep Mode

• PRESCAL: Prescaler Rate Selection
ADCClock = MCK / ((PRESCAL+1) * 2)

• STARTUP: Start Up Time
Startup Time = (STARTUP+1) * 8 / ADCClock

• SHTIM: Sample & Hold Time
Sample & Hold Time = (SHTIM+1) / ADCClock

TRGSEL Selected TRGSEL

0 0 0 Reserved

0 0 1 Reserved

0 1 0 Reserved

0 1 1 Reserved

1 0 0 Reserved

1 0 1 Reserved

1 1 0 External trigger

1 1 1 Reserved

LOWRES Selected Resolution

0 10-bit resolution

1 8-bit resolution

SLEEP Selected Mode

0 Normal Mode

1 Sleep Mode
475
8549A–CAP–10/08

32.6.3 ADC Channel Enable Register
Register Name: ADC_CHER

Access Type: Write-only

• CHx: Channel x Enable
0 = No effect.

1 = Enables the corresponding channel.

32.6.4 ADC Channel Disable Register
Register Name: ADC_CHDR

Access Type: Write-only

• CHx: Channel x Disable
0 = No effect.

1 = Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled then reenabled during a conver-
sion, its associated data and its corresponding EOC and OVRE flags in ADC_SR are unpredictable.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
476
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
32.6.5 ADC Channel Status Register
Register Name: ADC_CHSR

Access Type: Read-only

• CHx: Channel x Status
0 = Corresponding channel is disabled.

1 = Corresponding channel is enabled.

32.6.6 ADC Status Register
Register Name: ADC_SR

Access Type: Read-only

• EOCx: End of Conversion x
0 = Corresponding analog channel is disabled, or the conversion is not finished.

1 = Corresponding analog channel is enabled and conversion is complete.

• OVREx: Overrun Error x
0 = No overrun error on the corresponding channel since the last read of ADC_SR.

1 = There has been an overrun error on the corresponding channel since the last read of ADC_SR.

• DRDY: Data Ready
0 = No data has been converted since the last read of ADC_LCDR.

1 = At least one data has been converted and is available in ADC_LCDR.

• GOVRE: General Overrun Error
0 = No General Overrun Error occurred since the last read of ADC_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8

OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
477
8549A–CAP–10/08

1 = At least one General Overrun Error has occurred since the last read of ADC_SR.

• ENDRX: End of RX Buffer
0 = The Receive Counter Register has not reached 0 since the last write in ADC_RCR or ADC_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in ADC_RCR or ADC_RNCR.

• RXBUFF: RX Buffer Full
0 = ADC_RCR or ADC_RNCR have a value other than 0.

1 = Both ADC_RCR and ADC_RNCR have a value of 0.

32.6.7 ADC Last Converted Data Register
Register Name: ADC_LCDR

Access Type: Read-only

• LDATA: Last Data Converted
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conver-
sion is completed.

32.6.8 ADC Interrupt Enable Register
Register Name: ADC_IER

Access Type: Write-only

• EOCx: End of Conversion Interrupt Enable x

• OVREx: Overrun Error Interrupt Enable x

• DRDY: Data Ready Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – LDATA

7 6 5 4 3 2 1 0
LDATA

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8

OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
478
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
• GOVRE: General Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

32.6.9 ADC Interrupt Disable Register
Register Name: ADC_IDR

Access Type: Write-only

• EOCx: End of Conversion Interrupt Disable x

• OVREx: Overrun Error Interrupt Disable x

• DRDY: Data Ready Interrupt Disable

• GOVRE: General Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8

OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
479
8549A–CAP–10/08

32.6.10 ADC Interrupt Mask Register
Register Name: ADC_IMR

Access Type: Read-only

• EOCx: End of Conversion Interrupt Mask x

• OVREx: Overrun Error Interrupt Mask x

• DRDY: Data Ready Interrupt Mask

• GOVRE: General Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

32.6.11 ADC Channel Data Register
Register Name: ADC_CDRx

Access Type: Read-only

• DATA: Converted Data
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conver-
sion is completed. The Convert Data Register (CDR) is only loaded if the corresponding analog channel is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8

OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – DATA

7 6 5 4 3 2 1 0
DATA
480
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33. AT91CAP7E Electrical Characteristics
Note: This chapter contains preliminary values based on prototype silicon. These values are subject to change and will be recharac-

terized for the production silicon.

33.1 Absolute Maximum Ratings

33.2 DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.

Table 33-1. Absolute Maximum Ratings*

Operating Temperature (Industrial)-40⋅ C to +85⋅ C *NOTICE: Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at these or other conditions beyond those
indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reli-
ability.

Storage Temperature-60°C to +150°C

Voltage on Input Pins
with Respect to Ground-0.3V to +4.0V

Maximum Operating Voltage
(VDDCORE, VDDBU, VDDPLLB, VDDOSC, and
VDDOSC32)1.5V

Maximum Operating Voltage
(VDDIO, VDDPLLA, and AVDD)4.0V

Total DC Output Current on all I/O lines500 mA

Table 33-2. DC Characteristics

Symbol Parameter Conditions Min Typ Max Units

VVDDCORE DC Supply Core 1.08 1.32 V

VVDDBU DC Supply Backup 1.08 1.32 V

VVDDOSC DC Supply Oscillator 1.08 1.32 V

VVDDOSC32
DC Supply 32kHz
Oscillator

1.08 1.32 V

VVDDPLLA DC Supply PLLA 3.0 3.6 V

VVDDPLLB DC Supply PLLB 1.08 1.32 V

VVDDIO DC Supply I/Os 3.0 3.6 V

VAVDD DC Supply ADC 3.0 3.6 V

VIL Input Low-level Voltage -0.3 0.8 V

VIH Input High-level Voltage VVDDIO 2 VVDDIO+0.3 V

VOL Output Low-level Voltage 0.4 V

VOH Output High-level Voltage VVDDIO VVDDIO-0.4 V

RPULLUP Pull-up Resistance PA0-PA31 40 83 165 kOhm

IO Output Current PA0-PA31 8 mA
481
8549A–CAP–10/08

33.3 Power Consumption
This section contains:

• The typical power consumption of PLLs, Slow Clock (32 kHz) and Main Oscillator.

• The power consumption of power supply in three different modes: Active, Ultra Low-power
and Backup.

• The power consumption by peripheral: calculated as the difference in current measurement
after having enabled then disabled the corresponding clock.

33.3.1 Power Consumption versus Modes
The values in Table 33-3 and Table 33-4 on page 483 are estimated values of the power con-
sumption with operating conditions as follows:

• VDDIO = VDDPLLA = VAVDD =3.3 V

• VDDCORE = VDDBU = VDDOSC VDDOSC32 = 1.2V

• TA = 25° C

• There is no consumption on the I/Os of the device

Figure 33-1. Measures Schematics

These figures represent the power consumption estimated on the power supplies.

ISC Static Current

On VVDDCORE = 1.2V,
MCK = 0 Hz, excluding POR

TA =25°C 600

μA
All inputs driven
TMS, TDI, TCK, NRST = 1

TA =85°C

On VVDDBU = 1.2V,
Logic cells consumption,
including POR

TA =25°C 30
uA

All inputs driven WKUP = 0 TA =85°C

Table 33-2. DC Characteristics

V D D C O R E

V D D B U

A M P 2

A M P 1
482
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Table 33-3. Power Consumption for different Modes(1)

Mode Conditions Consumption Unit

Active

ARM Core clock is 80MHz.
MCK is 80MHz.

All peripheral clocks activated.

onto AMP2

tbd mA

Idle

Idle state, waiting an interrupt.

All peripheral clocks activated.

onto AMP2

tbd mA

Ultra low
power

ARM Core clock is 500Hz.

All peripheral clocks de-activated.
onto AMP2

tbd μA

Backup
Device only VDDBU powered
onto AMP1

30 μA

Table 33-4. Power Consumption by Peripheral in Active Mode

Peripheral Consumption Unit

PIO Controller tbd

mA

USART tbd

UDP tbd

ADC tbd

SPI tbd

Timer Counter Channels 0 to 2 tbd
483
8549A–CAP–10/08

33.4 32 kHz Crystal Oscillator Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

Notes: 1. RS is the equivalent series resistance, CL is the equivalent load capacitance.

2. CLEXT32 is determined by taking into account internal parasitic and package load capacitance.

3. Additional board load capacitance should be subtracted from CLEXT32.

Figure 33-2. 32kHz Crystal Connection

Table 33-5. 32 kHz Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCP32KHz) Crystal Oscillator Frequency 32.768 kHz

CCRYSTAL32 Crystal Load Capacitance Crystal @ 32.768 kHz 6 12.5 pF

CLEXT32
(2) External Load Capacitance

CCRYSTAL32 = 6 pF(3) 8 pF

CCRYSTAL32 = 12.5 pF(3) 21 pF

Duty Cycle 40 60 %

tST Startup Time

RS = 50 kΩ, CL = 6pF(1) 300 ms

RS = 50 kΩ, CL = 12.5 pF(1) 900 ms

RS = 100 kΩ, CL = 6pF(1) 600 ms

RS = 100 kΩ, CL = 12.5 pF(1) 1200 ms

X IN 3 223 2XIN32 X O U T 3 223 23 2XOUT32

CL E X T 3 2LEXT32
CCCL E X T 3 23LEXT32

CC R Y S T A L 3 2L 3 23CRYSTAL32

AT91CAP7

G N D B UGNDBU
484
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33.5 12 MHz Main Oscillator Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

Note: 1. Additional board load capacitance should be subtracted from CLEXT.

Figure 33-3. 12 MHz Crystal Connection

Table 33-7 gives the characteristics that the crystal must satisfy for correct operation with the oscillator.

Table 33-8 gives the Electrical Characteristics of the XIN pin when the oscillator is in Bypass Mode.

Table 33-6. Main Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCPMAIN) Crystal Oscillator Frequency 8 12 16 MHz

CCRYSTAL Crystal Load Capacitance 15 20 pF

CLEXT External Load Capacitance
CCRYSTAL = 15 pF(1) 25

pF
CCRYSTAL = 20 pF(1) 35

Duty Cycle 40 50 60 %

tST Startup Time 2 ms

IDDST Standby Current Consumption Standby mode 2 μA

PON Drive Level 150 μW

IDD ON Current Dissipation @ 12MHz 450 700 μA

IBYPASS Bypass Current Dissipation 3.6 6.2 μW/MHz

Table 33-7. Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor Rs 60 Ω

CM Motional Capacitance 5 9 fF

CS Shunt Capacitance 7 pF

Table 33-8. XIN Clock Electrical Characteristics in Bypass Mode

Symbol Parameter Conditions Min Max Units

1/(tCPXIN) XIN Clock Frequency 50 MHz

tCPXIN XIN Clock Period 20 ns

tCHXIN XIN Clock High Half-period 0.4 x tCPXIN 0.6 x tCPXIN

XIN XOUT

CLEXTCLEXT
CCRYSTAL

AT91CAP7

GNDUPLL
485
8549A–CAP–10/08

Note: These characteristics apply only when Main Oscillator is in Bypass Mode (i.e., when MOSCEN = 0 and OSCBYPASS = 1) in the
CKGR_MOR register. See PMC Clock Generator Main Oscillator Register in Section 24. ”Advanced Power Management
Controller” on page 207.

33.6 PLLA Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

Note: 1. Startup time depends on PLL RC filter. A calculation tool is provided by Atmel.

33.7 PLLB Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

tCLXIN XIN Clock Low Half-period 0.4 x tCPXIN 0.6 x tCPXIN

CIN XIN Input Capacitance (1) 5 pF

RIN XIN Pulldown Resistor (1) 500 kΩ

Table 33-9. Phase Lock Loop A Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FIN Input Frequency 1 12 32 MHz

FOUT Output Frequency Field OUT of CKGR_PLL is 00 80 160 240 MHz

IPLL Current Consumption
active mode 2 3 mA

standby mode 1 μA

Table 33-10. Phase Lock Loop B Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FIN Input Frequency
12 MHz recommended for best filter
and USB performance

1 12 32 MHz

FOUT Output Frequency 50 100 150 MHz

IPLL Current Consumption
active mode 2.5 mA

standby mode TBD μA

Table 33-8. XIN Clock Electrical Characteristics in Bypass Mode

Symbol Parameter Conditions Min Max Units
486
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33.8 USB Transceiver Characteristics

33.8.1 Electrical Characteristics

33.8.2 Switching Characteristics

Table 33-11. Electrical Parameters

Symbol Parameter Conditions Min Typ Max Unit

Input Levels

VIL Low Level 0.8 V

VIH High Level 2.0 V

VDI Differential Input Sensivity |(D+) - (D-)| 0.2 V

VCM

Differential Input Common
Mode Range

0.8 2.5 V

CIN Transceiver capacitance Capacitance to ground on each line 9.18 pF

I Hi-Z State Data Line Leakage 0V < VIN < 3.3V - 10 + 10 μA

REXT

Recommended External USB
Series Resistor

In series with each USB pin with ±5% 27 Ω

Output Levels

VOL Low Level Output
Measured with RL of 1.425 kΩ tied to
3.6V

0.0 0.3 V

VOH High Level Output
Measured with RL of 14.25 kΩ tied to
GND

2.8 3.6 V

VCRS

Output Signal Crossover
Voltage

Measure conditions described in
Figure 33-4 1.3 2.0 V

Table 33-12. In Low Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 400 pF 75 300 ns

tFE Transition Fall Time CLOAD = 400 pF 75 300 ns

tFRFM Rise/Fall time Matching CLOAD = 400 pF 80 125 %

Table 33-13. In Full Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 50 pF 4 20 ns

tFE Transition Fall Time CLOAD = 50 pF 4 20 ns

tFRFM Rise/Fall time Matching 90 111.11 %
487
8549A–CAP–10/08

Figure 33-4. USB Data Signal Rise and Fall Times

10% 10%

90%VCRS

tR tF
Differential
Data Lines

Rise Time Fall Time

Fosc = 6MHz/750kHz
REXT=27 ohms

CloadBuffer

(b)

(a)
488
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33.9 ADC

Notes: 1. Corresponds to 30 clock cycles at 13.2 MHz: 500nS (7clock cycles) for track and hold acquisition time and 23 clock cycles
for conversion.

The user can drive ADC input with impedance up to:

• ZOUT ≤ (SHTIM -500) x 12.5

with SHTIM (Sample and Hold Time register) expressed in ns and ZOUT expressed in ohms.

Table 33-14. Channel Conversion Time and ADC CLock

Parameter Conditions Min Typ Max Units

ADC Clock Frequency 10-bit resolution mode 13.2 MHz

ADC Clock Frequency 8-bit resolution mode TBD MHz

Startup Time Return from Idle Mode 40 μs

Track and Hold Acquisition Time 500 ns

Conversion Time ADC Clock = 13.2 MHz 1.74 μs

Throughput Rate ADC Clock = 13.2 MHz 440(1) kSPS

Table 33-15. External Voltage Reference Input

Parameter Conditions Min Typ Max Units

ADVREF Input Voltage Range 2.6 AVDD V

ADVREF Average Current Average on all DAC codes 600 μA

Operating Current on AVDD Average on 4 conversions full speed 400 μA

Operating Current on VDDC Average on 4 conversions full speed 80 μA

Standby Current on AVDD 300 nA

Standby Current on ADVREF 300 nA

Standby Current on VDDC 600 nA

Table 33-16. Analog Inputs

Parameter Min Typ Max Units

Input Voltage Range 0 ADVREF

Input Leakage Current 1 μA

Input Capacitance 6 8 10 pF

Table 33-17. Transfer Characteristics

Parameter Min Typ Max Units

Resolution 10 Bit

Integral Non-linearity ±2 LSB

Differential Non-linearity ±0.9 LSB

Offset Error -1.5 0.5 2.5 LSB

Gain Error ±2 LSB
489
8549A–CAP–10/08

33.10 Timings

33.10.1 Corner Definition

Timings in MAX corner always result from the extraction and comparison of timings in MAX and MIN corners.

Timings in STH corner always result from the extraction and comparision of timings in STH and MIN corners.

33.10.2 Processor Clock

33.10.3 Maximum Speed of the I/Os
Criteria used to define the maximum frequency of the I/Os:

• output duty cycle (40%-60%)

• minimum output swing: 100mV to VDDIO - 100mV

• Addition of rising and falling time inferior to 75% of the period

Notes: 1. Pin Group x = To Be Defined for each product

2. 3.3V domain: VVDDIOP from 3.0V to 3.6V, maximum external capacitor = 40pF

3. 1.8V domain: VVDDIOP from 1.65V to 1.95V, maximum external capacitor = 20pF

Table 33-18. Corner Definition

Corner Process
Temp
(External ; Junction) VDDCORE: 1.2V VDDIO: 3.3V

MAX Slow 85°C ; 100°C 1.10V 3.0V

STH Slow 85°C; 100°C 1.2V 3.3V

MIN Fast -40C; -40C 1.32V 3.6V

Table 33-19. Processor Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPPCK) Processor Clock Frequency Corner MAX 80 MHz

1/(tCPPCK) Processor Clock Frequency Corner STH TBD MHz

Table 33-20.

Symbol Parameter Conditions Min Max Units

FreqMax Pin Group x(1) frequency
3.3V domain (2) TBD MHz

1.8V domain (3) TBD MHz

PulseminH Pin Group(1) High Level Pulse Width
3.3V domain (2) TBD ns

1.8V domain (3) TBD ns

PulseminL Pin Group x(1) Low Level Pulse Width
3.3V domain (2) TBD ns

1.8V domain (3) TBD ns
490
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33.10.4 SMC Timings

33.10.4.1 Capacitance
Timings are given assuming a capacitance load on data, control and address pads.

In the following tables, tCPMCK is MCK period.

33.10.4.2 Read Timings

Table 33-21. Capacitance Load

Corner

Supply MAX STH MIN

3.3V 50pF 50pF 0 pF

Table 33-22. SMC Read Signals - NRD Controlled (READ_MODE= 1)

Symbol Parameter Min Units

VDDIO supply 3.3V

NO HOLD SETTINGS (nrd hold = 0)

SMC1 Data Setup before NRD High TBD ns

SMC2 Data Hold after NRD High TBD ns

 HOLD SETTINGS (nrd hold … 0)

SMC3 Data Setup before NRD High TBD ns

SMC4 Data Hold after NRD High TBD ns

 HOLD or NO HOLD SETTINGS (nrd hold … 0, nrd hold =0)

SMC5
 NBS0/A0, NBS1, NBS2/A1, NBS3,
A2 - A25 Valid before NRD High

(nrd setup + nrd pulse)* tCPMCK +
TBD

ns

SMC6 NCS low before NRD High
(nrd setup + nrd pulse - ncs rd

setup) * tCPMCK + TBD
ns

SMC7 NRD Pulse Width nrd pulse * tCPMCK + TBD ns

Table 33-23. SMC Read Signals - NCS Controlled (READ_MODE= 0)

Symbol Parameter Min Units

VDDIO supply 3.3V

NO HOLD SETTINGS (ncs rd hold = 0)

SMC8 Data Setup before NCS High TBD ns

SMC9 Data Hold after NCS High TBD ns

 HOLD SETTINGS (ncs rd hold … 0)

SMC10 Data Setup before NCS High TBD ns

SMC11 Data Hold after NCS High TBD ns

 HOLD or NO HOLD SETTINGS (ncs rd hold … 0, ncs rd hold = 0)
491
8549A–CAP–10/08

33.10.4.3 Write Timings

Notes: 1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs wr hold length” or “NWE hold
length”.

SMC12
 NBS0/A0, NBS1, NBS2/A1, NBS3,
A2 - A25 valid before NCS High

(ncs rd setup + ncs rd pulse)*
tCPMCK + TBD

ns

SMC13 NRD low before NCS High
(ncs rd setup + ncs rd pulse - nrd

setup)* tCPMCK + TBD
ns

SMC14 NCS Pulse Width
ncs rd pulse length * tCPMCK +

TBD
ns

Table 33-24. SMC Write Signals - NWE controlled (WRITE_MODE = 1)

Symbol Parameter Min Max Units

 HOLD or NO HOLD SETTINGS (nwe hold … 0, nwe hold = 0)

SMC15 Data Out Valid before NWE High
nwe pulse *

tCPMCK + TBD
ns

SMC16 NWE Pulse Width
nwe pulse *

tCPMCK + TBD
ns

SMC17
NBS0/A0 NBS1, NBS2/A1, NBS3,
A2 - A25 valid before NWE low

nwe setup *
tCPMCK + TBD

ns

SMC18 NCS low before NWE high

(nwe setup -
ncs rd setup +
nwe pulse) *
tCPMCK + TBD

ns

HOLD SETTINGS (nwe hold … 0)

SMC19

NWE High to Data OUT, NBS0/A0
NBS1, NBS2/A1, NBS3, A2 - A25
change

nwe hold *
tCPMCK + TBD

ns

SMC20 NWE High to NCS Inactive (1)
(nwe hold - ncs

wr hold)*
tCPMCK + TBD

ns

NO HOLD SETTINGS (nwe hold = 0)

SMC21

NWE High to Data OUT, NBS0/A0
NBS1, NBS2/A1, NBS3, A2 - A25,
NCS change(1)

TBD ns

Table 33-25. SMC Write NCS Controlled (WRITE_MODE = 0)

Symbol Parameter

Min

Units3.3V Supply

SMC22 Data Out Valid before NCS High ncs wr pulse * tCPMCK + TBD ns

SMC23 NCS Pulse Width ncs wr pulse * tCPMCK + TBD ns

SMC24
NBS0/A0 NBS1, NBS2/A1, NBS3, A2 -
A25 valid before NCS low

ncs wr setup * tCPMCK + TBD ns

Table 33-23. SMC Read Signals - NCS Controlled (READ_MODE= 0)
492
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 33-5. SMC Timings - NCS Controlled Read and Write

SMC25 NWE low before NCS high
(ncs wr setup - nwe setup +

ncs pulse)* tCPMCK + TBD
ns

SMC26

NCS High to Data Out, NBS0/A0,
NBS1, NBS2/A1, NBS3, A2 - A25,
change

ncs wr hold * tCPMCK + TBD ns

SMC27 NCS High to NWE Inactive
(ncs wr hold - nwe hold)*

tCPMCK + TBD
ns

Table 33-25. SMC Write NCS Controlled (WRITE_MODE = 0)

Symbol Parameter

Min

Units3.3V Supply

NRD

NCS

D0 - D15

NWE

NCS Controlled READ
with NO HOLD

NCS Controlled READ
with HOLD

NCS Controlled WRITE

SMC22 SMC26SMC10 SMC11

SMC12

SMC9SMC8

SMC14 SMC14 SMC23

SMC27

SMC26

A0/A1/NBS[3:0]/A2-A25

SMC24

SMC25

SMC12

SMC13 SMC13
493
8549A–CAP–10/08

Figure 33-6. SMC Timings - NRD Controlled Read and NWE Controlled Write

NRD

NCS

D0 - D31

NWE

A0/A1/NBS[3:0]/A2-A25

NRD Controlled READ
with NO HOLD

NWE Controlled WRITE
with NO HOLD

NRD Controlled READ
with HOLD

NWE Controlled WRITE
with HOLD

SMC1 SMC2 SMC15

SMC21

SMC3 SMC4 SMC15 SMC19

SMC20

SMC7

SMC21

SMC16

SMC7

SMC16

SMC19

SMC21

SMC17

SMC18

SMC5 SMC5

SMC6 SMC6

SMC17

SMC18
494
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33.10.5 SDRAMC Timings
The SDRAM Controller satisfies the timing of standard SDRAM modules given in Table 33-28 and in MAX and STH
corners.

Timings are given assuming a capacitance load on data, control and address pads :

Control/Address is the set of following timings : A0-A9, A11-A13, SDA10, SDCKE, SDCS, RAS, CAS, BAx, DQMx, and
SDWE

Table 33-26. Capacitance Load on Data, Control and Address Pads

Corner

Supply MAX STH MIN

3.3V 50pF 50pF 0 pF

1.8V 30 pF 30 pF 0 pF

Table 33-27. Capacitance Load on SDCK Pad

Corner

Supply MAX STH MIN

3.3V 10pF 10pF 10pF

1.8V 10pF 10pF 10pF

Table 33-28. SDRAMC Timings

Symbol Parameter

Min

Units3.3V Supply

SDRAMC1 Control/Address/Data out valid before SDCK Rising Edge(1) 0.5*tCPMCK+TBD ns

SDRAMC2 Control/Address/Data out change after SDCK Rising Edge(1) 0.5*tCPMCK+TBD ns

SDRAMC3 Data Input Setup before SDCK Rising Edge TBD ns

SDRAMC4 Data Input Hold after SDCK Rising Edge TBD ns
495
8549A–CAP–10/08

Figure 33-7. SDRAMC Timings

33.10.6 SPI

Figure 33-8. SPI Master Mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 33-9. SPI Master Mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Data In

SDCK

Data Out

SDRAMC1 SDRAMC2SDRAMC1 SDRAMC2

Control, Address

SDRAMC3 SDRAMC4

SDRAMC1 SDRAMC2

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

SPCK

MISO

MOSI

SPI5

SPI3 SPI4
496
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Figure 33-10. SPI Slave Mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Figure 33-11. SPI Slave Mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

Table 33-29. SPI Timings

Symbol Parameter Cond Min Max Units

Master Mode

SPI0 MISO Setup time before SPCK rises (1) TBD + 0.5*tCPMCK ns

SPI1 MISO Hold time after SPCK rises (1) TBD - 0.5* tCPMCK ns

SPI2 SPCK rising to MOSI valid (1) TBD ns

SPI2 SPCK rising to MOSI change (1) TBD ns

SPI3 MISO Setup time before SPCK falls (1) TBD + 0.5*tCPMCK ns

SPI4 MISO Hold time after SPCK falls (1) TBD - 0.5* tCPMCK ns

SPI5 SPCK falling to MOSI valid (1) TBD ns

SPI2 SPCK falling to MOSI change (1) TBD ns

Slave Mode

SPI6 SPCK falling to MISO valid (1) TBD ns

SPI6 SPCK falling to MISO change (1) TBD ns

SPCK

MISO

MOSI

SPI9

SPI10 SPI11
497
8549A–CAP–10/08

Notes: 1. Cload is 8pF for MISO and 6pF for SPCK and MOSI.

SPI7 MOSI Setup time before SPCK rises (1) TBD ns

SPI8 MOSI Hold time after SPCK rises (1) TBD ns

SPI9 SPCK rising to MISO valid (1) TBD ns

SPI9 SPCK rising to MISO change (1) TBD ns

SPI10 MOSI Setup time before SPCK falls (1) TBD ns

SPI11 MOSI Hold time after SPCK falls (1) TBD ns

SPI12 NPCS0,1,2,3 to MOSI (1) TBD ns

SPI13 NPCS0,1,2,3 to MISO (1) TBD ns

Table 33-29. SPI Timings

Symbol Parameter Cond Min Max Units
498
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
34. AT91CAP7E Mechanical Characteristics

34.1 Thermal Considerations

34.1.1 Thermal Data
Table 34-1 summarizes the thermal resistance data depending on the package.

34.1.2 Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:

4.

5.

where:

• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 34-1 on
page 499.

• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 34-1 on page 499.

• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.

• PD = device power consumption (W) estimated from data provided in the section Section 33.3
”Power Consumption” on page 482.

• TA = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 34-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air
LFBGA 225

13x13mm 0.8mm pitch
35.3 °C/W

θJC Junction-to-case thermal resistance Still Air
LFBGA 225

13x13mm 0.8mm pitch
28 °C/W

TJ TA PD θJA×()+=

TJ TA P(D θ(HEATSINK× θJC))+ +=
499
8549A–CAP–10/08

34.2 Package Drawings
225-ball LFBGA Package DrawingSoldering Profile

Table 34-2. Soldering Information

Ball Land 0.530 mm +/- 0.03

Soldering Mask Opening 0.370mm to 0.03 mm

Table 34-3. Device and 225-ball LFBGA Package Maximum Weight

365.2 mg

Table 34-4. 225-ball LFBGA Package Characteristics

Moisture Sensitivity Level 3

Table 34-5. Package Reference

JEDEC Drawing Reference MO-205

JESD97 Classification e1

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 D 13.00 BSC

 E 13.00 BSC

 A – – 1.70 3

 A1 0.25 – – 3

 A2 0.85 – –

 e 0.80 BSC

 b 0.45 0.50 0.55 4

NN

RR

PP

131314141515

AA

BB
CC

112233445566

A1 BALL PAD CORNERA1 BALL PAD CORNER

881010 9911111212

ee

77

DD

EE

GG

FF

JJ
HH

KK
LL

MM

ee

0.
90

 R
E

F
0.

90
 R

E
F

0.90 REF0.90 REF

BOTTOM VIEWBOTTOM VIEW
(225 SOLDER BALLS)(225 SOLDER BALLS)

ZZ0.120.12

XX YY

ZZ

A1A1

ZZ&& 0.15 M 0.15 M

& & b b

A2A2

SEATING PLANESEATING PLANE

&& 0.08 M 0.08 M ZZ

ZZ0.100.10

AA

XX

0.100.10 4X4X

YY

A1 BALL PAD CORNERA1 BALL PAD CORNER DD

EE

TOP VIEWTOP VIEW SIDE VIEWSIDE VIEW
500
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
35. AT91CAP7E Ordering Information

Table 35-1. AT91CAP7E Ordering Information

Ordering Code Package Package Type Temperature Operating Range

AT91CAP7E BGA225 RoHS Compliant
 Industrial

-40°C to 85°C
501
8549A–CAP–10/08

502
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
36. Revision History

Doc. Rev. Date Comments

8549A 10/2008 Initial document release.
503
8549A–CAP–10/08

504
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
Table of Contents

1 Description ... 2

2 Block Diagram .. 3

3 Signal Description ... 4

4 Package and Pinout ... 11

4.1Mechanical Overview of the 225-ball LFBGA Package ...11

4.2225-ball LFBGA Package Pinout ...11

5 Power Considerations ... 14

5.1Power Supplies ...14

5.2Power Consumption ..14

6 I/O Line Considerations ... 15

6.1JTAG Port Pins ..15

6.2Test Pin ...15

6.3Reset Pins ...15

6.4PIO Controllers ..15

6.5Shut Down Logic pins ..15

7 Processor and Architecture .. 16

7.1ARM7TDMI Processor ..16

7.2Debug and Test Features ..16

7.3Bus Matrix ...16

7.4.1Matrix Masters 17

7.5.2Matrix Slaves 17

7.6Peripheral DMA Controller ..17

8 Memories .. 18

8.1Embedded Memories ..18

8.2Memory Mapping ...18

8.3Internal Memory Mapping ..19

8.4.1Internal 160-kBytes Fast SRAM 19

8.5.2Boot Memory 19

8.6Boot Program ..19

8.7External Memories Mapping ..19

8.8External Bus Interface ...19

8.9.1Static Memory Controller 20

8.10.2SDRAM Controller 20
505
8549A–CAP–10/08

9 System Controller .. 22

9.1System Controller Block Diagram ..23

9.2System Controller Mapping ...24

9.3Reset Controller ..25

9.4Shut Down Controller ..25

9.5Clock Generator ..25

9.6Power Management Controller ..26

9.7Periodic Interval Timer ..27

9.8Watchdog Timer ..27

9.9Real-Time Timer ..27

9.10General-Purpose Backed-up Registers ...28

9.11Backup Power Switch ..28

9.12Advanced Interrupt Controller ...28

9.13Debug Unit ..28

9.14Chip Identification ..29

9.15PIO Controllers ..29

9.16User Interface ..30

9.17.1Special System Controller Register Mapping 30

9.18.2Oscillator Mode Register 30
9.19.3General Purpose Backup Register 31

10 Peripherals ... 32

10.1Peripheral Mapping ...32

10.2Peripheral Identifiers ...34

10.3Peripheral Interrupts and Clock Control ..35

10.4.1System Interrupt 35

10.5.2External Interrupts 35
10.6.3Timer Counter Interrupts 35

10.7Peripherals Signals Multiplexing on I/O Lines ...35

10.8.1PIO Controller A Multiplexing 36

10.9.2PIO Controller B Multiplexing 37
10.10.3Resource Multiplexing 37

10.11Embedded Peripherals Overview ..38

10.12.1Serial Peripheral Interface 38

10.13.2USART 38
10.14.3Timer Counter 39

10.15.4USB Device Port 39

10.16.5Analog to Digital Converter 39

11 FPGA Interface (FPIF) .. 41

11.1Description ..41
506
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
11.2System Requirements and Integration ..41

11.3Functional Description ...42

11.4.1Interface Modules 43

11.5.2Serializer Modules 43

11.6.3Serializer Programmability 44
11.7.4Transfer Timing 45

11.8Programmability Options ...46

11.9.1Mode-Bits 46

11.10.2PIO Controller B Multiplexing 47

11.11.3Other MPIO Signal Assignments/Multiplexing 48

11.12Interfacing using PIO ...49

11.13.1PIO-FPGA Connections 50

11.14.2PIO-FPGA Access Routines 50

11.15.3PIO-FPGA Waveforms 51

11.16Interfacing using EBI ...52

11.17.1EBI-FPGA Connections 52

11.18.2EBI TIming 52

12 ARM7TDMI Processor Overview .. 55

12.1Overview ...55

12.2ARM7TDMI Processor ..55

12.3.1Instruction Type 55
12.4.2Data Type 55

12.5.3ARM7TDMI Operating Mode 55

12.6.4ARM7TDMI Registers 56
12.7.5ARM Instruction Set Overview 58

12.8.6Thumb Instruction Set Overview 59

13 CAP7E Debug and Test ... 61

13.1Overview ...61

13.2Block Diagram ...61

13.3Application Examples ..62

13.4.1Debug Environment 62
13.5.2Test Environment 63

13.6Debug and Test Pin Description ..63

13.7Functional Description ...64

13.8.1Test Pin 64

13.9.2Embedded In-circuit Emulator 64
13.10.3Debug Unit 64

13.11.4IEEE 1149.1 JTAG Boundary Scan 64

13.12.5ID Code Register 65

14 Reset Controller (RSTC) .. 67

14.1Description ..67

14.2Block Diagram ...67
507
8549A–CAP–10/08

14.3Functional Description ...67

14.4.1Reset Controller Overview 67

14.5.2NRST Manager 68

14.6.3Reset States 69
14.7.4Reset State Priorities 73

14.8.5Reset Controller Status Register 73

14.9Reset Controller (RSTC) User Interface ..74

14.10.1Reset Controller Control Register 75

14.11.2Reset Controller Status Register 75
14.12.3Reset Controller Mode Register 76

15 Real-time Timer (RTT) .. 79

15.1Description ..79

15.2Block Diagram ...79

15.3Functional Description ...79

15.4Real-time Timer User Interface ...81

15.5.1Register Mapping 81

15.6.2Real-time Timer Mode Register 82
15.7.3Real-time Timer Alarm Register 83

15.8.4Real-time Timer Value Register 83

15.9.5Real-time Timer Status Register 84

16 Periodic Interval Timer (PIT) ... 85

16.1Description ..85

16.2Block Diagram ...85

16.3Functional Description ...85

16.4Periodic Interval Timer (PIT) User Interface ..87

16.5.1Periodic Interval Timer Mode Register 87

16.6.2Periodic Interval Timer Status Register 88

16.7.3Periodic Interval Timer Value Register 88
16.8.4Periodic Interval Timer Image Register 89

17 Watchdog Timer (WDT) ... 91

17.1Description ..91

17.2Block Diagram ...91

17.3Functional Description ...91

17.4User Interface ..93

17.5.1Register Mapping 93

17.6.2Watchdog Timer Control Register 93
17.7.3Watchdog Timer Mode Register 94

17.8.4Watchdog Timer Status Register 95

18 Shutdown Controller (SHDWC) .. 97

18.1Description ..97
508
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
18.2Block Diagram ...97

18.3I/O Lines Description ...97

18.4Product Dependencies ..97

18.5.1Power Management 97

18.6Functional Description ...97

18.7Shutdown Controller (SHDWC) User Interface ...98

18.8.1Register Mapping 98

18.9.2Shutdown Control Register 99

18.10.3Shutdown Mode Register 100
18.11.4Shutdown Status Register 101

19 Bus Matrix ... 103

19.1Description ..103

19.2Memory Mapping ...103

19.3Special Bus Granting Mechanism ...103

19.4.1No Default Master 103

19.5.2Last Access Master 103
19.6.3Fixed Default Master 103

19.7Arbitration ..104

19.8Arbitration Rules ..104

19.9.1Undefined Length Burst Arbitration 104

19.10.2Slot Cycle Limit Arbitration 105
19.11.3Round-Robin Arbitration 105

19.12.4Fixed Priority Arbitration 105

19.13AHB Generic Bus Matrix User Interface ..106

19.14.1Bus Matrix Master Configuration Registers 108
19.15.2Bus Matrix Slave Configuration Registers 109

19.16.3Bus Matrix Priority Registers A For Slaves 110

19.17.4Bus Matrix Priority Registers B For Slaves 110
19.18.5Bus Matrix Master Remap Control Register 111

19.19.6EBI Chip Select Assignment Register 112

19.20.7Matrix USB Pad Pull-up Control Register 113

20 External Bus Interface (EBI) .. 115

20.1Overview ...115

20.2Block Diagram ...116

20.3I/O Lines Description ...117

20.4Application Example ..118

20.5.1Hardware Interface 118

20.6.2Connection Examples 121

20.7Product Dependencies ..121

20.8.1I/O Lines 121

20.9Functional Description ...122

20.10.1Bus Multiplexing 122
509
8549A–CAP–10/08

20.11.2Pull-up Control 122
20.12.3Static Memory Controller 122

20.13.4SDRAM Controller 122

20.14.5CompactFlash Support 122
20.15.6NAND Flash Support 127

21 Static Memory Controller (SMC) ... 131

21.1Description ..131

21.2I/O Lines Description ...131

21.3Multiplexed Signals ...131

21.4Application Example ..132

21.5.1Hardware Interface 132

21.6Product Dependencies ..132

21.7.1I/O Lines 132

21.8External Memory Mapping ..133

21.9Connection to External Devices ..133

21.10.1Data Bus Width 133
21.11.2Byte Write or Byte Select Access 133

21.12Standard Read and Write Protocols ..137

21.13.1Read Waveforms 138

21.14.2Read Mode 140
21.15.3Write Waveforms 142

21.16.4Write Mode 144

21.17.5Coding Timing Parameters 145
21.18.6Reset Values of Timing Parameters 146

21.19.7Usage Restriction 146

21.20Automatic Wait States ...146

21.21.1Chip Select Wait States 146
21.22.2Early Read Wait State 147

21.23.3Reload User Configuration Wait State 149

21.24.4Read to Write Wait State 150

21.25Data Float Wait States ..150

21.26.1READ_MODE 150

21.27.2TDF Optimization Enabled (TDF_MODE = 1) 152

21.28.3TDF Optimization Disabled (TDF_MODE = 0) 152

21.29External Wait ...154

21.30.1Restriction 154

21.31.2Frozen Mode 155

21.32.3Ready Mode 157
21.33.4NWAIT Latency and Read/write Timings 159

21.34Slow Clock Mode ...160

21.35.1Slow Clock Mode Waveforms 160

21.36.2Switching from (to) Slow Clock Mode to (from) Normal Mode 161

21.37Asynchronous Page Mode ..163

21.38.1Protocol and Timings in Page Mode 163
510
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
21.39.2Byte Access Type in Page Mode 164
21.40.3Page Mode Restriction 164

21.41.4Sequential and Non-sequential Accesses 164

21.42Static Memory Controller (SMC) User Interface ..166

21.43.1SMC Setup Register 167
21.44.2SMC Pulse Register 168

21.45.3SMC Cycle Register 169

21.46.4SMC MODE Register 170

22 SDRAM Controller (HSDRAMC) .. 173

22.1Description ..173

22.2I/O Lines Description ...173

22.3Application Example ..173

22.4Software Interface ...173

22.5.132-bit Memory Data Bus Width 174
22.6.216-bit Memory Data Bus Width 175

22.7Product Dependencies ..176

22.8.1SDRAM Device Initialization 176

22.9.2I/O Lines 177
22.10.3Interrupt 177

22.11Functional Description ...177

22.12.1SDRAM Controller Write Cycle 177

22.13.2SDRAM Controller Read Cycle 178
22.14.3Border Management 179

22.15.4SDRAM Controller Refresh Cycles 180

22.16.5Power Management 181

22.17SDRAM Controller User Interface ...185

22.18.1SDRAMC Mode Register 186

22.19.2SDRAMC Refresh Timer Register 187

22.20.3SDRAMC Configuration Register 187
22.21.4SDRAMC High Speed Register 189

22.22.5SDRAMC Low Power Register 190

22.23.6SDRAMC Interrupt Enable Register 191
22.24.7SDRAMC Interrupt Disable Register 191

22.25.8SDRAMC Interrupt Mask Register 192

22.26.9SDRAMC Interrupt Status Register 192
22.27.10SDRAMC Memory Device Register 193

23 Peripheral DMA Controller (PDC) ... 195

23.1Description ..195

23.2Block Diagram ...196

23.3Functional Description ...196

23.4.1Configuration 196

23.5.2Memory Pointers 197

23.6.3Transfer Counters 197
23.7.4Data Transfers 198
511
8549A–CAP–10/08

23.8.5PDC Flags and Peripheral Status Register 198

23.9Peripheral DMA Controller (PDC) User Interface ..199

23.10.1Receive Pointer Register 200

23.11.2Receive Counter Register 200

23.12.3Transmit Pointer Register 201
23.13.4Transmit Counter Register 201

23.14.5Receive Next Pointer Register 202

23.15.6Receive Next Counter Register 202

23.16.7Transmit Next Pointer Register 203
23.17.8Transmit Next Counter Register 203

23.18.9Transfer Control Register 204

23.19.10Transfer Status Register 205

24 Advanced Power Management Controller ... 207

24.1Clock Generator ..207

24.2.1Description 207

24.3.2Slow Clock Crystal Oscillator 207

24.4.3Slow Clock RC Oscillator 207
24.5.4Main Oscillator 207

24.6.5Divider and PLL Block 209

24.7Power Management Controller (PMC) ..212

24.8.1Description 212
24.9.2Master Clock Controller 212

24.10.3Processor Clock Controller 213

24.11.4USB Clock Controller 213
24.12.5Peripheral Clock Controller 214

24.13.6HClock Controller 214

24.14.7Programmable Clock Output Controller 214
24.15.8Programming Sequence 214

24.16.9Clock Switching Details 220

24.17.10Power Management Controller (PMC) User Interface 224

25 Advanced Interrupt Controller (AIC) .. 241

25.1Description ..241

25.2Block Diagram ...242

25.3.1Application Block Diagram 242

25.4.2AIC Detailed Block Diagram 242

25.5I/O Line Description ...243

25.6Product Dependencies ..243

25.7.1I/O Lines 243
25.8.2Power Management 243

25.9.3Interrupt Sources 243

25.10Functional Description ...244

25.11.1Interrupt Source Control 244

25.12.2Interrupt Latencies 246
25.13.3Normal Interrupt 247

25.14.4Interrupt Handlers 248
512
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
25.15.5Fast Interrupt 250
25.16.6Protect Mode 252

25.17.7Spurious Interrupt 253

25.18.8General Interrupt Mask 253

25.19Advanced Interrupt Controller (AIC) User Interface ...254

25.20.1Base Address 254

25.21.2Register Mapping 254

25.22.3AIC Source Mode Register 255

25.23.4AIC Source Vector Register 256
25.24.5AIC Interrupt Vector Register 256

25.25.6AIC FIQ Vector Register 257

25.26.7AIC Interrupt Status Register 257
25.27.8AIC Interrupt Pending Register 258
25.28.9AIC Interrupt Mask Register 258

25.29.10AIC Core Interrupt Status Register 259
25.30.11AIC Interrupt Enable Command Register 259

25.31.12AIC Interrupt Disable Command Register 260

25.32.13AIC Interrupt Clear Command Register 260
25.33.14AIC Interrupt Set Command Register 261

25.34.15AIC End of Interrupt Command Register 261

25.35.16AIC Spurious Interrupt Vector Register 262
25.36.17AIC Debug Control Register 262

25.37.18AIC Fast Forcing Enable Register 263

25.38.19AIC Fast Forcing Disable Register 263
25.39.20AIC Fast Forcing Status Register 264

26 Debug Unit (DBGU) .. 265

26.1Description ..265

26.2Block Diagram ...266

26.3Product Dependencies ..267

26.4.1I/O Lines 267

26.5.2Power Management 267
26.6.3Interrupt Source 267

26.7UART Operations ..267

26.8.1Baud Rate Generator 267

26.9.2Receiver 268
26.10.3Start Detection and Data Sampling 268

26.11.4Transmitter 270

26.12.5Peripheral Data Controller 271
26.13.6Test Modes 272

26.14.7Debug Communication Channel Support 272

26.15.8Chip Identifier 273

26.16ICE Access Prevention ..273

26.17Debug Unit User Interface ..274

26.18.1Debug Unit Control Register 275
26.19.2Debug Unit Mode Register 276

26.20.3Debug Unit Interrupt Enable Register 277
513
8549A–CAP–10/08

26.21.4Debug Unit Interrupt Disable Register 278
26.22.5Debug Unit Interrupt Mask Register 279

26.23.6Debug Unit Status Register 280

26.24.7Debug Unit Receiver Holding Register 282
26.25.8Debug Unit Transmit Holding Register 282

26.26.9Debug Unit Baud Rate Generator Register 283

26.27.10Debug Unit Chip ID Register 284

26.28.11Debug Unit Chip ID Extension Register 287

26.29Debug Unit Force NTRST Register ...287

27 Parallel Input/Output Controller (PIO) .. 289

27.1Description ..289

27.2Block Diagram ...290

27.3Product Dependencies ..291

27.4.1Pin Multiplexing 291

27.5.2External Interrupt Lines 291

27.6.3Power Management 291
27.7.4Interrupt Generation 291

27.8Functional Description ...292

27.9.1Pull-up Resistor Control 293

27.10.2I/O Line or Peripheral Function Selection 293
27.11.3Peripheral A or B Selection 293

27.12.4Output Control 293

27.13.5Synchronous Data Output 294
27.14.6Multi Drive Control (Open Drain) 294

27.15.7Output Line Timings 294

27.16.8Inputs 295
27.17.9Input Glitch Filtering 295

27.18.10Input Change Interrupt 296

27.19I/O Lines Programming Example ..296

27.20User Interface ..297

27.21.1PIO Controller PIO Enable Register 300
27.22.2PIO Controller PIO Disable Register 300

27.23.3PIO Controller PIO Status Register 301

27.24.4PIO Controller Output Enable Register 301
27.25.5PIO Controller Output Disable Register 302

27.26.6PIO Controller Output Status Register 302

27.27.7PIO Controller Input Filter Enable Register 303
27.28.8PIO Controller Input Filter Disable Register 303

27.29.9PIO Controller Input Filter Status Register 304

27.30.10PIO Controller Set Output Data Register 304
27.31.11PIO Controller Clear Output Data Register 305

27.32.12PIO Controller Output Data Status Register 305

27.33.13PIO Controller Pin Data Status Register 306

27.34.14PIO Controller Interrupt Enable Register 306
27.35.15PIO Controller Interrupt Disable Register 307

27.36.16PIO Controller Interrupt Mask Register 307
514
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
27.37.17PIO Controller Interrupt Status Register 308
27.38.18PIO Multi-driver Enable Register 308

27.39.19PIO Multi-driver Disable Register 309

27.40.20PIO Multi-driver Status Register 309
27.41.21PIO Pull Up Disable Register 310

27.42.22PIO Pull Up Enable Register 310

27.43.23PIO Pull Up Status Register 311

27.44.24PIO Peripheral A Select Register 311
27.45.25PIO Peripheral B Select Register 312

27.46.26PIO Peripheral A B Status Register 312

27.47.27PIO Output Write Enable Register 313
27.48.28PIO Output Write Disable Register 313

27.49.29PIO Output Write Status Register 314

28 Serial Peripheral Interface (SPI) ... 315

28.1Description ..315

28.2Block Diagram ...316

28.3Application Block Diagram ..317

28.4Signal Description ..317

28.5Product Dependencies ..317

28.6.1I/O Lines 317
28.7.2Power Management 317

28.8.3Interrupt 318

28.9Functional Description ...318

28.10.1Modes of Operation 318
28.11.2Data Transfer 319

28.12.3Master Mode Operations 320

28.13.4SPI Slave Mode 328

28.14Serial Peripheral Interface (SPI) User Interface ..329

28.15.1SPI Control Register 330

28.16.2SPI Mode Register 331

28.17.3SPI Receive Data Register 332
28.18.4SPI Transmit Data Register 334

28.19.5SPI Status Register 335

28.20.6SPI Interrupt Enable Register 337
28.21.7SPI Interrupt Disable Register 338

28.22.8SPI Interrupt Mask Register 339

28.23.9SPI Chip Select Register 340

29 Universal Synchronous Asynchronous Receiver Transmitter (USART)
343

29.1Description ..343

29.2Block Diagram ...344

29.3Application Block Diagram ..345

29.4I/O Lines Description ..345
515
8549A–CAP–10/08

29.5Product Dependencies ..346

29.6.1I/O Lines 346

29.7.2Power Management 346

29.8.3Interrupt 346

29.9Functional Description ...347

29.10.1Baud Rate Generator 347

29.11.2Receiver and Transmitter Control 352

29.12.3Synchronous and Asynchronous Modes 352

29.13.4ISO7816 Mode 369
29.14.5IrDA Mode 371

29.15.6RS485 Mode 374

29.16.7Modem Mode 375
29.17.8Test Modes 375

29.18USART User Interface ..378

29.19.1USART Control Register 379

29.20.2USART Mode Register 381
29.21.3USART Interrupt Enable Register 384

29.22.4USART Interrupt Disable Register 385

29.23.5USART Interrupt Mask Register 386
29.24.6USART Channel Status Register 387

29.25.7USART Receive Holding Register 390

29.26.8USART Transmit Holding Register 390
29.27.9USART Baud Rate Generator Register 391

29.28.10USART Receiver Time-out Register 392

29.29.11USART Transmitter Timeguard Register 392
29.30.12USART FI DI RATIO Register 393

29.31.13USART Number of Errors Register 393

29.32.14USART Manchester Configuration Register 394
29.33.15USART IrDA FILTER Register 395

30 Timer/Counter (TC) .. 397

30.1Description ..397

30.2Block Diagram ...398

30.3Pin Name List ..399

30.4Product Dependencies ..399

30.5.1I/O Lines 399

30.6.2Power Management 399
30.7.3Interrupt 399

30.8Functional Description ...400

30.9.1TC Description 400

30.10.216-bit Counter 400

30.11.3Clock Selection 400
30.12.4Clock Control 402

30.13.5TC Operating Modes 402

30.14.6Trigger 402
30.15.7Capture Operating Mode 403

30.16.8Capture Registers A and B 403
516
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
30.17.9Trigger Conditions 403
30.18.10Waveform Operating Mode 405

30.19.11Waveform Selection 405

30.20.12External Event/Trigger Conditions 412
30.21.13Output Controller 412

30.22Timer Counter (TC) User Interface ..413

30.23.1TC Block Control Register 414

30.24.2TC Block Mode Register 414

30.25.3TC Channel Control Register 415
30.26.4TC Channel Mode Register: Capture Mode 416

30.27.5TC Channel Mode Register: Waveform Mode 418

30.28.6TC Counter Value Register 421
30.29.7TC Register A 422

30.30.8TC Register B 422

30.31.9TC Register C 423
30.32.10TC Status Register 423

30.33.11TC Interrupt Enable Register 425

30.34.12TC Interrupt Disable Register 426
30.35.13TC Interrupt Mask Register 427

31 USB Device Port (UDP) .. 429

31.1Description ..429

31.2Block Diagram ...430

31.3Product Dependencies ..431

31.4.1I/O Lines 431

31.5.2Power Management 431
31.6.3Interrupt 431

31.7Typical Connection ..432

31.8.1USB Device Transceiver 432

31.9.2VBUS Monitoring 432

31.10Functional Description ...433

31.11.1USB V2.0 Full-speed Introduction 433

31.12.2Handling Transactions with USB V2.0 Device Peripheral 435

31.13.3Controlling Device States 443

31.14USB Device Port (UDP) User Interface ...447

31.15.1UDP Frame Number Register 448

31.16.2UDP Global State Register 449

31.17.3UDP Function Address Register 450
31.18.4UDP Interrupt Enable Register 451

31.19.5UDP Interrupt Disable Register 452

31.20.6UDP Interrupt Mask Register 453
31.21.7UDP Interrupt Status Register 455

31.22.8UDP Interrupt Clear Register 457

31.23.9UDP Reset Endpoint Register 458

31.24.10UDP Endpoint Control and Status Register 459
31.25.11UDP FIFO Data Register 464

31.26.12UDP Transceiver Control Register 465
517
8549A–CAP–10/08

32 Analog-to-digital Converter (ADC) ... 467

32.1Description ..467

32.2Block Diagram ...467

32.3Signal Description ...468

32.4Product Dependencies ..468

32.5.1Power Management 468

32.6.2Interrupt Sources 468
32.7.3Analog Inputs 468

32.8.4I/O Lines 468

32.9.5Timer Triggers 468
32.10.6Conversion Performances 468

32.11Functional Description ...468

32.12.1Analog-to-digital Conversion 468

32.13.2Conversion Reference 469
32.14.3Conversion Resolution 469

32.15.4Conversion Results 470

32.16.5Conversion Triggers 471
32.17.6Sleep Mode and Conversion Sequencer 472

32.18.7ADC Timings 472

32.19Analog-to-digital Converter (ADC) User Interface ...473

32.20.1ADC Control Register 474
32.21.2ADC Mode Register 474

32.22.3ADC Channel Enable Register 476

32.23.4ADC Channel Disable Register 476
32.24.5ADC Channel Status Register 477

32.25.6ADC Status Register 477

32.26.7ADC Last Converted Data Register 478
32.27.8ADC Interrupt Enable Register 478

32.28.9ADC Interrupt Disable Register 479

32.29.10ADC Interrupt Mask Register 480
32.30.11ADC Channel Data Register 480

33 AT91CAP7E Electrical Characteristics .. 481

33.1Absolute Maximum Ratings ...481

33.2DC Characteristics ..481

33.3Power Consumption ..482

33.4.1Power Consumption versus Modes 482

33.532 kHz Crystal Oscillator Characteristics ..484

33.612 MHz Main Oscillator Characteristics ...485

33.7PLLA Characteristics ...486

33.8PLLB Characteristics ...486

33.9USB Transceiver Characteristics ...487

33.10.1Electrical Characteristics 487

33.11.2Switching Characteristics 487
518
8549A–CAP–10/08

AT91CAP7E

AT91CAP7E
33.12ADC ..489

33.13Timings ..490

33.14.1Corner Definition 490

33.15.2Processor Clock 490

33.16.3Maximum Speed of the I/Os 490
33.17.4SMC Timings 491

33.18.5SDRAMC Timings 495

33.19.6SPI 496

34 AT91CAP7E Mechanical Characteristics ... 499

34.1Thermal Considerations ..499

34.2.1Thermal Data 499
34.3.2Junction Temperature 499

34.4Package Drawings ..500

35 AT91CAP7E Ordering Information ... 501

36 Revision History ... 503
519
8549A–CAP–10/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
CAP@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others, are registered trademarks or trademarks
of Atmel Corporation or its subsidiaries. ARM®, ARM7TDMI® and Thumb® and others are registered trademarks or trademarks of ARM Ltd. Other
terms and product names may be trademarks of others.
8549A–CAP–10/08

